Quenching scientific curiosity with single-molecule imaging

July 24, 2019

A single-molecule imaging technique, called protein-induced fluorescence enhancement (PIFE), has gained traction in recent years as a popular tool for observing DNA-protein interactions with nanometer precision. Yet, according to a new KAUST study, research laboratories have not been using the technique to its fullest potential.

The PIFE assay is predicated on the idea that DNA tagged with a fluorescent dye will glow brighter when proteins are bound in the vicinity. In many instances, this is true--which has led many scientists to adopt PIFE over other more labor-intensive techniques that rely on dual labeling of proteins and DNA.

But Samir Hamdan's graduate students Fahad Rashid, Manal Zaher and Vlad-Stefan Raducanu realized that protein binding to DNA-dye complexes could sometimes have the opposite effect as well. Instead of enhancing the fluorescent signal, protein interactions can sometimes dampen the glow, depending on certain properties of the system.

Hamdan credits the curiosity of his students for making this observation and detailing how it works. Inspiration from Rashid's previous work led the team to the phenomenon they call protein-induced fluorescence quenching (PIFQ). And as Rashid explains, "We set out to better define the conditions that lead to fluorescent booms or busts."

Through a combination of experimental and computational analyses, the KAUST team showed that the initial fluorescence state of the DNA-dye complex determines whether PIFE or PIFQ will result after protein binding. Without this knowledge, the likelihood of either event becomes equivalent to a coin toss, which can jeopardize the mechanistic interpretation of laboratory results.

"When insight into this initial state is gleaned from fluorescence and structural work, the anticipation of either effect becomes experimentally feasible," Raducanu explains.

Factors such as DNA sequence and dye position could tip the balance toward PIFE or PIFQ; the KAUST team got so good at interpreting the molecular code that they could accurately predict which would happen simply by measuring how these parameters influence the initial fluorescence state of the DNA-dye system.

"We turned every measurement into a game," Zaher says, "and we are happy to say that our hypothesis predicted the outcome more than 90 percent of the time!"

These novel insights should dramatically expand the reach and experimental promise of this powerful single-molecule imaging tool, predicts Raducanu. "By introducing PIFQ, we offer researchers in the field the possibility to address several biological questions where PIFE might not have been witnessed," he says.

Scientists may also opt to combine PIFE and PIFQ to decipher multistep and multiprotein processes with just a single DNA-dye construct.

"Taking into consideration the context-dependent nature of fluorescence modulation in the DNA-dye system opens the door to many possibilities in experimental design that could be tailored to researchers' needs," Zaher says.

"We now anticipate that interpretation of data and attribution of molecular events from single-molecule data will become easier and more precise," Rashid adds.
-end-


King Abdullah University of Science & Technology (KAUST)

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.