Nav: Home

Picky pathogens help non-native tree species invade

July 24, 2019

 

Walk into a forest made of only native trees, and you probably notice many different tree species around you, with no one species dominating the ecosystem. Such biodiversity - the variety of life and species in the forest - ensures that each species gets a role to play in the ecosystem, boosting forest health and productivity. However, when non-native trees invade, they form dense groups of a single species of tree. This bucks conventional wisdom because, in theory, pathogens - microscopic disease-causing organisms - should prevent this from happening.

Trees have many natural enemies, such as herbivores and insects that nibble on their leaves. But their main foes are invisible to the naked eye. In older forests especially, fungal pathogens evolve to attack the seedlings of certain tree species and, over time, accumulate in the soils around the adults, hindering the growth of their seeds. Seeds that fall far away from their parent typically survive better. The pathogens thus help dictate where native trees can grow and prevent some species from dominating others.

This effect is part of the Janzen-Connell hypothesis, a widely accepted explanation for the promotion of biodiversity in forests. The theory was developed in the 1970s by ecologists Daniel Janzen and Joseph Connell, who said that species-specific herbivores, pathogens, or other natural enemies make the areas near a tree inhospitable for the survival of its seedlings. If one species becomes too abundant, there will be few safe places for its seedlings to survive, thus promoting the growth of other plant species within one area.

Why, then, do introduced tree species often invade, outcompete, and displace native trees, even those of the same genus? The subject is the focus of a new study published in the Ecological Society of America's journal Ecosphere.

Aleksandra Wróbel, a PhD candidate in the Department of Systematic Zoology at Adam Mickiewicz University in Poland, says that the relationship between native trees and their enemy pathogens is a tightly co-evolved one; so tight, in fact, that pathogens may not be able to recognize or attack even closely-related introduced tree species. "Enemy-release" theory states that because introduced species are new to the ecosystem, they do not have enemies yet in the soil, and their seeds can fall densely and thrive, becoming invasive. This relaxation of the Janzen-Connell effect, says Wróbel, "gives non-native species a big competitive advantage over native species."

To test how the intensity of the effect differs between tree species of a same genus, Wróbel and colleagues use greenhouse and field experiments to study two pairs of invasive and native tree species in Central Europe: boxelder (Acer negundo) vs. Norway maple (Acer platanoides), and Northern red oak (Quercus rubra) vs. pedunculate oak (Quercus robur). They also conduct surveys of natural forests containing populations of all four species to investigate their survival in an uncontrolled environment.

Under controlled conditions, the invasive species of both pairs fare better than their respective native cousins, avoiding attack by soil pathogens; they are released from the Janzen-Connell effect, giving them the survival advantage. However, under natural conditions, one genus pair (Acer) followed the expected pattern, with non-native seedlings escaping pathogen attack, while the other pair (Quercus) did not. Wróbel chalks this up to the complexity of interactions with other plants and animals that tree seedlings experience in the wild.

This study indicates that freedom from disease partially explains why non-native tree species dominate in areas where they are introduced. Improving understanding of the role that plant-soil interactions play in the establishment and spread of invasive plants is critical for developing effective management and control strategies.

"Figuring out why invasive species are able to proliferate so readily in new areas is one of the most important issues in ecology and nature protection," concludes Wróbel, "and the results of our research provide additional insight into the factors responsible for the success of certain non-native species."
-end-
Journal article

Wróbel, Aleksandra, et al. 2019. "Differential impacts of soil microbes on native and co?occurring invasive tree species." Ecosphere. DOI: 10.1002/ecs2.2802

Authors

Aleksandra Wróbel, Rafa Zwolak; Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Pozna?, Poland

Elizabeth E. Crone , Department of Biology, Tufts University, Medford, Massachusetts, USA

 

Author contact:

Aleksandra Wróbel, wrobel_a1@wp.pl

The Ecological Society of America (ESA), founded in 1915, is the world's largest community of professional ecologists and a trusted source of ecological knowledge, committed to advancing the understanding of life on Earth. The 9,000 member Society publishes fivejournalsand a membership bulletin and broadly shares ecological information through policy, media outreach, and education initiatives. The Society's Annual Meeting attracts 3,000-4,000 attendees and features the most recent advances in ecological science. Visit the ESA website at http://www.esa.org.

Contact: Zoe Gentes, 202-833-8773 ext. 211, zgentes@esa.org">zgentes@esa.org

Ecological Society of America

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...