Nav: Home

Picky pathogens help non-native tree species invade

July 24, 2019

 

Walk into a forest made of only native trees, and you probably notice many different tree species around you, with no one species dominating the ecosystem. Such biodiversity - the variety of life and species in the forest - ensures that each species gets a role to play in the ecosystem, boosting forest health and productivity. However, when non-native trees invade, they form dense groups of a single species of tree. This bucks conventional wisdom because, in theory, pathogens - microscopic disease-causing organisms - should prevent this from happening.

Trees have many natural enemies, such as herbivores and insects that nibble on their leaves. But their main foes are invisible to the naked eye. In older forests especially, fungal pathogens evolve to attack the seedlings of certain tree species and, over time, accumulate in the soils around the adults, hindering the growth of their seeds. Seeds that fall far away from their parent typically survive better. The pathogens thus help dictate where native trees can grow and prevent some species from dominating others.

This effect is part of the Janzen-Connell hypothesis, a widely accepted explanation for the promotion of biodiversity in forests. The theory was developed in the 1970s by ecologists Daniel Janzen and Joseph Connell, who said that species-specific herbivores, pathogens, or other natural enemies make the areas near a tree inhospitable for the survival of its seedlings. If one species becomes too abundant, there will be few safe places for its seedlings to survive, thus promoting the growth of other plant species within one area.

Why, then, do introduced tree species often invade, outcompete, and displace native trees, even those of the same genus? The subject is the focus of a new study published in the Ecological Society of America's journal Ecosphere.

Aleksandra Wróbel, a PhD candidate in the Department of Systematic Zoology at Adam Mickiewicz University in Poland, says that the relationship between native trees and their enemy pathogens is a tightly co-evolved one; so tight, in fact, that pathogens may not be able to recognize or attack even closely-related introduced tree species. "Enemy-release" theory states that because introduced species are new to the ecosystem, they do not have enemies yet in the soil, and their seeds can fall densely and thrive, becoming invasive. This relaxation of the Janzen-Connell effect, says Wróbel, "gives non-native species a big competitive advantage over native species."

To test how the intensity of the effect differs between tree species of a same genus, Wróbel and colleagues use greenhouse and field experiments to study two pairs of invasive and native tree species in Central Europe: boxelder (Acer negundo) vs. Norway maple (Acer platanoides), and Northern red oak (Quercus rubra) vs. pedunculate oak (Quercus robur). They also conduct surveys of natural forests containing populations of all four species to investigate their survival in an uncontrolled environment.

Under controlled conditions, the invasive species of both pairs fare better than their respective native cousins, avoiding attack by soil pathogens; they are released from the Janzen-Connell effect, giving them the survival advantage. However, under natural conditions, one genus pair (Acer) followed the expected pattern, with non-native seedlings escaping pathogen attack, while the other pair (Quercus) did not. Wróbel chalks this up to the complexity of interactions with other plants and animals that tree seedlings experience in the wild.

This study indicates that freedom from disease partially explains why non-native tree species dominate in areas where they are introduced. Improving understanding of the role that plant-soil interactions play in the establishment and spread of invasive plants is critical for developing effective management and control strategies.

"Figuring out why invasive species are able to proliferate so readily in new areas is one of the most important issues in ecology and nature protection," concludes Wróbel, "and the results of our research provide additional insight into the factors responsible for the success of certain non-native species."
-end-
Journal article

Wróbel, Aleksandra, et al. 2019. "Differential impacts of soil microbes on native and co?occurring invasive tree species." Ecosphere. DOI: 10.1002/ecs2.2802

Authors

Aleksandra Wróbel, Rafa Zwolak; Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Pozna?, Poland

Elizabeth E. Crone , Department of Biology, Tufts University, Medford, Massachusetts, USA

 

Author contact:

Aleksandra Wróbel, wrobel_a1@wp.pl

The Ecological Society of America (ESA), founded in 1915, is the world's largest community of professional ecologists and a trusted source of ecological knowledge, committed to advancing the understanding of life on Earth. The 9,000 member Society publishes fivejournalsand a membership bulletin and broadly shares ecological information through policy, media outreach, and education initiatives. The Society's Annual Meeting attracts 3,000-4,000 attendees and features the most recent advances in ecological science. Visit the ESA website at http://www.esa.org.

Contact: Zoe Gentes, 202-833-8773 ext. 211, zgentes@esa.org">zgentes@esa.org

Ecological Society of America

Related Biodiversity Articles:

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.
Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.
Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.
About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.