Nav: Home

Closing the terahertz gap: Tiny laser is an important step toward new sensors

July 24, 2019

In a major step toward developing portable scanners that can rapidly measure molecules in pharmaceuticals or classify tissue in patients' skin, researchers have created an imaging system that uses lasers small and efficient enough to fit on a microchip.

The system emits and detects electromagnetic radiation at terahertz frequencies -- higher than radio waves but lower than the long-wave infrared light used for thermal imaging. Imaging using terahertz radiation has long been a goal for engineers, but the difficulty of creating practical systems that work in this frequency range has stymied most applications and resulted in what engineers call the "terahertz gap."

"Here, we have a revolutionary technology that doesn't have any moving parts and uses direct emission of terahertz radiation from semiconductor chips," said Gerard Wysocki, an associate professor of electrical engineering at Princeton University and one of the leaders of the research team.

Terahertz radiation can penetrate substances such as fabrics and plastics, is non-ionizing and therefore safe for medical use, and can be used to view materials difficult to image at other frequencies. The new system, described in a paper published in the June issue of the journal Optica, can quickly probe the identity and arrangement of molecules or expose structural damage to materials.

The device uses stable beams of radiation at precise frequencies. The setup is called a frequency comb because it contains multiple "teeth" that each emit a different, well-defined frequency of radiation. The radiation interacts with molecules in the sample material. A dual-comb structure allows the instrument to efficiently measure the reflected radiation. Unique patterns, or spectral signatures, in the reflected radiation allow researchers to identify the molecular makeup of the sample.

While current terahertz imaging technologies are expensive to produce and cumbersome to operate, the new system is based on a semiconductor design that costs less and can generate many images per second. This speed could make it useful for real-time quality control of pharmaceutical tablets on a production line and other fast-paced uses.

"Imagine that every 100 microseconds a tablet is passing by, and you can check if it has a consistent structure and there's enough of every ingredient you expect," said Wysocki.

As a proof of concept, the researchers created a tablet with three zones containing common inert ingredients in pharmaceuticals -- forms of glucose, lactose and histidine. The terahertz imaging system identified each ingredient and revealed the boundaries between them, as well as a few spots where one chemical had spilled over into a different zone. This type of "hot spot" represents a frequent problem in pharmaceutical production that occurs when the active ingredient is not properly mixed into a tablet.

The team also demonstrated the system's resolution by using it to image a U.S. quarter. Fine details like the eagle's wing feathers, as small as one-fifth of a millimeter wide, were clearly visible.

While the technology makes the industrial and medical use of terahertz imaging more feasible than before, it still requires cooling to a low temperature, a major hurdle for practical applications. Many researchers are now working on lasers that will potentially operate at room temperature. The Princeton team said its dual-comb hyperspectral imaging technique will work well with these new room-temperature laser sources, which could then open many more uses.

Because it is non-ionizing, terahertz radiation is safe for patients and could potentially be used as a diagnostic tool for skin cancer. In addition, the technology's ability to image metal could be applied to test airplane wings for damage after being struck by an object in flight.

In addition to Wysocki, the paper's Princeton authors are former visiting graduate student Lukasz Sterczewski (currently a postdoctoral scholar at NASA's Jet Propulsion Laboratory) and associate research scholar Jonas Westberg. Other co-authors are Yang Yang, David Burghoff and Qing Hu of the Massachusetts Institute of Technology; and John Reno of Sandia National Laboratories. Support for the research was provided in part by the Defense Advanced Research Projects Agency and the U.S. Department of Energy.
-end-


Princeton University, Engineering School

Related Radiation Articles:

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.
Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.
Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.
'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.
Radiation contamination at a crematorium
Radioactive compounds known as radiopharmaceuticals are used in nuclear medicine procedures to diagnose and treat disease.
First study of terahertz radiation in liquids
A research team from ITMO University and the University of Rochester (the USA) conducted a study on the formation of terahertz radiation in liquids.
A new way to create Saturn's radiation belts
A team of international scientists from BAS, University of Iowa and GFZ German Research Centre for Geosciences has discovered a new method to explain how radiation belts are formed around the planet Saturn.
A better device for measuring electromagnetic radiation
Researchers have developed a better bolometer, a device for measuring electromagnetic radiation.
More Radiation News and Radiation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.