Nav: Home

What do dragonflies teach us about missile defense?

July 24, 2019

ALBUQUERQUE, N.M. -- Be grateful you're not on a dragonfly's diet. You might be a fruit fly or maybe a mosquito, but it really wouldn't matter the moment you look back and see four powerful wings pounding through the air after you. You fly for your life, weaving evasively, but the dragonfly somehow tracks you with seemingly instant reflexes. For a moment, you think you've gotten away, just as it closes in swiftly from below for the kill.

Then, as the dinosaur-era predator claws into you with its spiny legs and drags you into its jaws midair, you might wonder to yourself, "How did it catch me with such a tiny brain and no depth perception?"

Sandia National Laboratories is homing in on the answer with research showing how dragonfly brains might be wired to be extremely efficient at calculating complex trajectories.

In recent computer simulations, faux dragonflies in a simplified virtual environment successfully caught their prey using computer algorithms designed to mimic the way a dragonfly processes visual information while hunting. The positive test results show the programming is fundamentally a sound model.

The Sandia research is examining whether dragonfly-inspired computing could improve missile defense systems, which have the similar task of intercepting an object in flight, by making on-board computers smaller without sacrificing speed or accuracy. Dragonflies catch 95% of their prey, crowning them one of the top predators int he world.

Computational neuroscientist Frances Chance, who developed the algorithms, is presenting her research this week at the International Conference on Neuromorphic Systems in Knoxville, Tennessee. Earlier this month, she presented at the Annual Meeting of the Organization for Computational Neurosciences in Barcelona, Spain.

Research replicates dragonfly's highly efficient brain

Chance specializes in replicating biological neural networks -- brains, basically -- which require less energy and are better at learning and adapting than computers. Her studies focus on neurons, which are cells that send information through the nervous system.

"I try to predict how neurons are wired in the brain and understand what kinds of computations those neurons are doing, based on what we know about the behavior of the animal or what we know about the neural responses," she said.

For example, a dragonfly's reaction time to a maneuvering prey is a mere 50 milliseconds. A human blink takes about 300 milliseconds. Fifty milliseconds is only enough time for information to cross about three neurons. In other words, to keep up with a dragonfly, an artificial neural network needs to be done processing information after only three steps -- though, because brains fire lots of signals at once, each step may involve many calculations running at the same time.

Faster, lighter computing for missile defense

Missile defense systems rely on established intercept techniques that are, relatively speaking, computation-heavy. But rethinking those strategies using highly efficient dragonflies as a model could potentially:
  • Shrink the size, weight and power needs of onboard computers. This would allow interceptors to be smaller and lighter, and therefore more maneuverable.
  • Reveal new ways to intercept maneuvering targets such as hypersonic weapons, which follow less-predictable trajectories than ballistic missiles.
  • Reveal new ways to home in on a target with less sophisticated sensors than are currently used.
Dragonflies and missiles move at vastly different speeds, so it's unknown how well this research will ultimately translate to missile defense. But developing a computational model of a dragonfly brain also could have long-term benefits for machine learning and artificial intelligence.

AI is used throughout wide-ranging industries, from self-driving transportation to prescription drug development. These fields stand to gain from highly efficient methods for constructing fast solutions to complex problems. Ongoing research at Sandia is refining Chance's algorithms and determining where they're most applicable.
-end-
Her research is funded by Sandia's Laboratory Directed Research and Development program.

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

DOE/Sandia National Laboratories

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.