Nav: Home

Designed protein switch allows unprecedented control over living cells

July 24, 2019

Scientists have created the first completely artificial protein switch that can work inside living cells to modify--or even commandeer--the cell's complex internal circuitry.

The switch is dubbed LOCKR, short for Latching, Orthogonal Cage/Key pRotein.

Companion papers published July 24 in the journal Nature describe LOCKR's design and demonstrate several practical applications of the technology. The work was conducted by bioengineering teams led by David Baker at the UW Medicine Institute for Protein Design and Hana El-Samad at UC San Francisco.

The scientists show that LOCKR can be "programmed" to modify gene expression, redirect cellular traffic, degrade specific proteins, and control protein binding interactions. The researchers also use LOCKR to build new biological circuits that behave like autonomous sensors. These circuits detect cues from the cell's internal or external environment and respond by making changes to the cell. This is akin to the way a thermostat senses ambient temperature and directs a heating or cooling system to shut itself off as soon as a desired temperature is reached.

Once assembled by a cell, these new switches measure just eight nanometers on their longest side. More than a hundred million would be needed to cover the period at the end of this sentence.

"The ability to control cells with designer proteins ushers in a new era of biology," said El-Samad, the Kuo Family Professor of Biochemistry and Biophysics at UCSF and co-senior author of the reports. "In the same way that integrated circuits enabled the explosion of the computer chip industry, these versatile and dynamic biological switches could soon unlock precise control over the behavior of living cells and, ultimately, our health."

Having no counterpart in the natural world, LOCKR stands apart from every tool of the biotech trade, including recent technologies like optogenetics and CRISPR. While its predecessors were discovered in nature and then retooled for use in labs, industry, or medicine, LOCKR is among the first biotechnology tools entirely conceived of and built by humans.

The lead authors of the reports are Bobby Langan and Scott Boyken of the UW Medicine Institute for Protein Design, and Andrew Ng of the UC Berkeley-UCSF Graduate Program in Bioengineering.

"Right now, every cell is responding to its environment," said Langan. "Cells receive stimuli, then have to figure out what to do about it. They use natural systems to tune gene expression or degrade proteins, for example."

Langan and his colleagues set out to create a new way to interface with these cellular systems. They used computational protein design to create self-assembling proteins that present bioactive peptides only upon addition of specific molecular "keys."

With a version of LOCKR installed in yeast, the team was able to show that the genetically engineered fungus could be made to degrade a specific cellular protein at a time of the researchers' choosing. By redesigning the switch, they also demonstrated the same effect in lab-grown human cells.

To stay healthy, cells must tightly control their biochemical processes. Abnormal activity in just one gene, or buildup of the wrong protein, can upset a cell's equilibrium. This could lead to cell death or even cancer. LOCKR gives scientists a new way to interact with living cells. It could thereby enable a new wave of therapies for diseases as diverse as cancer, autoimmune disorders and more.

"LOCKR opens a whole new realm of possibility for programming cells," said Ng. "We are now limited more by our imagination and creativity rather than the proteins that nature has evolved."
-end-
The July Nature papers reporting these findings are titled, "De novo design of bioactive protein switches" and "Modular and tunable biological feedback control using a de novo protein switch."

This news release was written by Ian Haydon at the UW Medicine Institute for Protein Design and Jason Alvarez at the news office of UCSF.

University of Washington Health Sciences/UW Medicine

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.