Outcompeting cancer

July 24, 2019

One of the reasons cancer cells are so robust against the body's natural defenses is that they are in fact human cells, and as such they have the innate machinery not only to trick the body's defense and maintenance systems, but even to hijack them. Therefore, discovering cancer cells' full "bag of tricks" is key for fighting cancer.

Eduardo Moreno, principal investigator at the Champalimaud Centre for the Unknown, in Lisbon, Portugal, has taken an important step in this direction by discovering one new such "trick": a cell-competition mechanism which he has named "fitness fingerprints".

"We first identified this 'fitness fingerprints' mechanism in the model animal Drosophila melanogaster (the common fruit fly), in 2010, and now, in this new study published in the journal Nature, we were able to prove that it also exists in humans and that blocking it halts the growth of human cancer cells", says Moreno.

Bad neighbours

Moreno and his team discovered that neighbouring cells in the body are constantly evaluating each other's fitness level by using special markers that each cell exhibits on its surface. "We found that there are actually two types of markers: 'Win' fitness fingerprints, which signify that the cell is young and healthy and 'Lose' fitness fingerprints, which signify that the cell is old or damaged", Moreno explains. "If a cell is less fit than its neighbours, meaning that it either has less Win or more Lose than them, then they eliminate it, thereby ensuring the health and integrity of the tissue as a whole."

According to Moreno, his team found that this process is important for proper development, tissue regeneration after injury and to prevent premature aging, but that it can also be hijacked for tumour growth.

"Cancer cells use these fitness fingerprints to disguise themselves as super-fit cells that have relatively many more Win fitness fingerprints on their surface [than their healthy neighbours]. This makes the normal cells that surround cancer cells appear less healthy by comparison. In this way, cancer cells trick their healthy neighbours and bring about their death, consequently destroying the tissue and making room for tumour expansion."

When fitness fingerprints were identified by Moreno's group in the fruit fly, it was not known whether this cell competition mechanism would be conserved in humans, as it is possible that different animals use different strategies to detect unwanted cells. In fact, Moreno suspected that this mechanism might not be conserved.

"Fitness fingerprints can be very useful, but they also carry a significant cancer risk since they make tumours more aggressive. Such a tradeoff may be acceptable for short-lived animals such as the fruit fly, but for long lived animals such as humans it might be too risky", he points out. However, following a series of experiments in human cancer cells, they found that we humans possess this double-edged mechanism after all.

Fitness fingerprints in human cancer

To find out whether human cells express fitness fingerprints and whether they are involved in cancer, two researchers in the lab, Rajan Gogna and Esha Madan, performed a series of experiments. They began by identifying the gene that codes for fitness fingerprints in the human genome. Once the gene was identified, they saw that it actually codes for four different types of fitness fingerprints: two types of Win fitness fingerprints and two types of Lose fitness fingerprints.

Next, to observe whether the fitness fingerprints impact cancer growth, the team analysed the expression of these four types in different types of tissues: malignant cancer (breast and colon), benign tumors (breast and colon), tissue adjacent to the tumour and normal tissue.

Their analysis revealed several striking findings: in normal tissue, the expression of Win was overall quite sparse, and expression of Lose was even lower. In contrast, the expression of Win was significantly increased in all tumors, with higher levels in malignant tumors than in benign.

But more alarmingly, tumours seemed to be transforming the fitness level exhibited by the neighboring tissue to their advantage: "expression of Lose was significantly higher in tissue adjacent to tumors, when compared to normal tissue. Moreover, Lose levels were higher in tissue adjacent to malignant tumors than around benign tumours", Gogna explains. "In fact, further statistical analysis showed that expression levels of Win in cancer and Lose in the neighbouring tissue can predict cancer malignancy accurately 86.3% of the time."

On the road to potential therapies

The team's findings strongly suggested that high expression of Win fingerprints in the tumor, in association with high expression of Lose in the surrounding tissue, is a prerequisite for tumor growth. So they decided to test the effect of blocking this mechanism. To do that, they implanted grafts from human tumours in mice and knocked out (or cancelled), the expression of fitness fingerprints.

The results were encouraging: "we found that this manipulation significantly reduced the volume of the tumours, showing that it diminished the destructive power of the tumour against its host tissue. However, this approach alone does not eliminate the cancer cells, just slows down their progress", Madan explains.

Next, to test the full therapeutic potential of this approach, the team decided to combine blocking fitness fingerprints expression with chemotherapy. This two-pronged approach was very successful: "we were able to further reduce, and in some cases completely eliminate, tumorigenesis!", says Gogna.

According to Moreno, this is yet another example of basic, curiosity-based research that ends up having important implications for human health. "When we began studying cell competition in the fruit fly, we were addressing it as a basic biology question: how do tissues eliminate viable, but suboptimal, cells. From there to potential cancer therapies seems like an almost unlikely development, but this is how research works; you start with the curiosity to know how things work and from there, sometimes, you find yourself on the road to potential novel therapies."

Next, Moreno's team is planning to study this mechanism more deeply, while continuing to collaborate with clinicians for the development of future cancer drugs. "These findings are very encouraging, but they are still preliminary and it will be some years before we are able to use them to help cancer patients", he concludes.
-end-
Link to article: https://www.nature.com/articles/s41586-019-1429-3

Reference: Esha Madan, Christopher J. Pelham, Masaki Nagane, Taylor M. Parker, Rita Canas-Marques, Kimberly Fazio, Kranti Shaik, Youzhong Yuan, Vanessa Henriques, Antonio Galzerano, Tadashi Yamashita, Miguel Alexandre Ferreira Pinto, Antonio M. Palma, Denise Camacho, Ana Vieira, David Soldini, Harikrishna Nakshatri, Steven R. Post, Christa Rhiner, Hiroko Yamashita, Davide Accardi, Laura A. Hansen, Carlos Carvalho, Antonio L. Beltran, Periannan Kuppusamy,Rajan Gogna* & Eduardo Moreno*. Flower isoforms promote competitive growth in cancer. Nature. https://doi.org/10.1038/s41586-019-1429-3.

Champalimaud Centre for the Unknown

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.