Nav: Home

Seeing clearly: Revised computer code accurately models an instability in fusion plasmas

July 24, 2019

Subatomic particles zip around ring-shaped fusion machines known as tokamaks and sometimes merge, releasing large amounts of energy. But these particles -- a soup of charged electrons and atomic nuclei, or ions, collectively known as plasma -- can sometimes leak out of the magnetic fields that confine them inside tokamaks. The leakage cools the plasma, reducing the efficiency of the fusion reactions and damaging the machine. Now, physicists have confirmed that an updated computer code could help to predict and ultimately prevent such leaks from happening.

The research team updated TRANSP, the plasma simulation code developed at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and used in fusion research centers around the world, by installing a new bit of code known as a kick model into one of the TRANSP components. The kick model -- so called because it simulates jolts of energy that kick the particles within the plasma -- allows TRANSP to simulate particle behavior more accurately than before. Aided by subprograms known as NUBEAM and ORBIT that model plasma behavior by distilling information from raw data, this updated version of TRANSP could help physicists better understand and predict the leaks, as well as create engineering solutions to minimize them.

Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma -- the hot, charged state of matter composed of free electrons and atomic nuclei -- that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

The team found that the updated version of TRANSP accurately modeled the effect of the sawtooth instability -- a kind of disturbance affecting the fusion reactions -- on the movement of highly energetic particles that help cause fusion reactions. "These results are important because they may allow physicists to use the same approach to deal with a broad spectrum of instabilities without switching from one model to another depending on the specific problem," said PPPL physicist Mario Podestà, a coauthor of the paper that reported the findings in Nuclear Fusion. The results, based on sawtooth instabilities that occurred during operation of PPPL's National Spherical Torus Experiment-Upgrade (NSTX-U) in 2016, extend previous PPPL research into putting kick models into TRANSP.

The updated version of TRANSP can simulate plasma behavior of experiments that have not been conducted yet, Podestà said. "Because we understand the physics built into the kick model, and because that model successfully simulated results from past experiments for which we have data, we have confidence that the kick model can accurately model future experiments," he said.

In the future, the researchers want to determine what happens between instabilities to get a fuller sense of what's occuring in the plasma. In the meantime, Podestà and the other scientists are encouraged by the current results. "We now see a path forward to improving the ways that we can simulate certain mechanisms that disturb plasma particles," Podestà said. "This brings us closer to reliable and quantitative predictions for the performance of future fusion reactors."
This research was supported by the DOE's Office of Science (FES). The team included scientists from PPPL and the University of California, Irvine.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Fields Articles:

Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
The FASEB Journal: Magnetic fields enhance bone remodeling
Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling.
Tangled magnetic fields power cosmic particle accelerators
Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe.
Growing magnetic fields in deep space: Just wiggle the plasma
Astrophysicists have long wondered how cosmic magnetic fields fields are produced, sustained, and magnified.
Surprise finding: Discovering a previously unknown role for a source of magnetic fields
Feature describes unexpected discovery of a role the process that seeds magnetic fields plays in mediating a phenomenon that occurs throughout the universe and can disrupt cell phone service and knock out power grids on Earth.
Neutrons scan magnetic fields inside samples
With a newly developed neutron tomography technique, an HZB team has been able to map for the first time magnetic field lines inside materials at the BER II research reactor.
More Magnetic Fields News and Magnetic Fields Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab