Expanding the limits of personalized medicine with high-performance computing

July 24, 2019

What should personalized, precision treatment of cancer look like in the future? We know that people are different, their tumors are different, and they respond differently to different therapies. Medical teams of the future might be able to create a "virtual twin" of a person and their tumor. Then, by tapping supercomputers, physician-led teams could simulate how tumor cells behave to test millions (or billions) of possible treatment combinations. Ultimately, the best combinations might offer clues towards a personalized, effective treatment plan.

Sound like wishful thinking? The first steps towards this vision have been undertaken by a multi-institution research collaboration that includes Jonathan Ozik and Nicholson Collier, computational scientists at the U.S. Department of Energy's Argonne National Laboratory.

The research team, which includes collaborators at Indiana University and the University of Vermont Medical Center, brought the power of high-performance computing to the thorny challenge of improving cancer immunotherapy. The team tapped twin supercomputers at Argonne and the University of Chicago, finding that high-performance computing can yield clues in fighting cancer, as discussed in a June 7 article published in Molecular Systems Design and Engineering.

"With this new approach, researchers can use agent-based modeling in more scientifically robust ways." -- Nicholson Collier, computational scientist at Argonne and the University of Chicago

Standing up to cancer

Cancer immunotherapy is a promising treatment that realigns your immune system to reduce or eliminate cancer cells. The therapy, however, helps only 10 to 20 percent of patients -- partly because the way in which cancer cells and immune cells mingle is complex and poorly understood. Proven rules are scarce.

To begin uncovering the rules of immunotherapy, the team turned to a set of three tools: The trio operate in a hierarchy. The framework, developed by Ozik, Collier, Argonne colleagues, and Gary An, a surgeon and professor at the University of Vermont Medical Center, is called Extreme-scale Model Exploration with Swift (EMEWS). It oversees the agent-based model and the workflow system, the Swift/T parallel scripting language, developed at Argonne and the University of Chicago.

What is unique about this combination of tools? "We are helping more people in a variety of computational science fields to do large-scale experimentation with their models," said Ozik, who -- like Collier -- holds a joint appointment at the University of Chicago. "Building a model is fun. But without supercomputers, it is difficult to really understand the full potential of how models can behave." 

Working smarter, not harder

The team sought to find simulated scenarios in which: They found that no cancer cells grew in 19 percent of simulations, 9 in 10 cancer cells died in 6 percent of simulations, and 99 in 100 cancer cells died in about 2 percent of the simulations.

The team began with an agent-based model, built with the PhysiCell framework, designed by Indiana University's Paul Macklin to explore cancer and other diseases. They assigned each cancer and immune cell characteristics -- birth and death rates, for example -- that govern their behavior and then let them loose.

"We use agent-based modeling to address many problems," said Ozik. "But these models are often computationally intensive and produce a lot of random noise."

Exploring every possible scenario within the PhysiCell model would have been impractical. "You can't cover the entire model's possible behavior space," said Collier. So the team needed to work smarter, not harder.

The team relied on two approaches -- genetic algorithms and active learning, which are forms of machine learning-- to guide the PhysiCell model and find the parameters that best controlled or killed the simulated cancer cells.

Genetic algorithms seek those ideal parameters by simulating the model, say, 100 times and measuring the results. The model then repeats the process again and again using better-performing parameter values each time. "The process allows you to find the best set of parameters quickly, without having to run every single combination," said Collier.

Active learning is different. It also repeatedly simulates the model, but, as it does, it tries to discover regions of parameter values where it would be most advantageous to further explore in order to get a full picture of what works and what doesn't. In other words, "where you can sample to get the best bang for your buck," said Ozik.

Meanwhile, Argonne's EMEWS acted like a conductor, signaling the genetic and active learning algorithms at the right times and coordinating the large number of simulations on Argonne's Bebop cluster in its Laboratory Computing Resource Center, as well as on the University of Chicago's Beagle supercomputer.

Moving beyond medicine

The research team is applying similar approaches to challenges across different cancer types, including colon, breast and prostate cancer.

Argonne's EMEWS framework can offer insights in areas beyond medicine. Indeed, Ozik and Collier are currently using the system to explore the complexities of rare earth metals and their supply chains. "With this new approach, researchers can use agent-based modeling in more scientifically robust ways," said Collier.
-end-
The team also included Randy Heiland, a senior systems analyst and programmer at Indiana University. Argonne researchers were funded by the National Institutes of Health.

Video: Successful and unsuccessful cancer immunotherapy designs
Video: PhysiCell demo: immune cells attacking a heterogeneous tumor


Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

DOE/Argonne National Laboratory

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.