Nav: Home

Balancing beams: Multiple laser beamlets show better electron and ion acceleration

July 24, 2019

Osaka, Japan - A research team led by Osaka University showed how multiple overlapping laser beams are better at accelerating electrons to incredibly fast speeds, as compared with a single laser. This method can lead to more powerful and efficient X-ray and ion generation for laboratory astrophysics, cancer therapy research, as well as a path toward controlled nuclear fusion.

High-energy density physics is a field of study that deals with conditions much closer the chaotic moments immediately following the Big Bang than those commonly encountered on Earth. However, being able to produce and control intense beams of light, or very fast-moving electrons, has many practical benefits. These include the ability to make very bright X-rays needed for visualizing ultrafast deformation of matter, or conducting experiments that mimic the cosmological conditions near the surface of a star.

However, it is often tricky to keep efficiently accelerating electron beams with intense laser beams because of complex interactions between the laser and electrons. Previously, very expensive optics or patterned targets were required to transfer laser energy to the electron beam energy. In a new study, researchers at Osaka University showed how splitting the laser beam into four coherent smaller beams, called beamlets, allows more energy to be transferred to electrons. This was accomplished by creating specific light interference patterns that keep the electrons on track.

"Just like overlapping ripples in pond can create complex wave structures, we can use four laser beamlets to precisely control the environment to best accelerate the electrons," explains first author Morace. They found that the simultaneous irradiation of multiple laser beams at a single point allows for highly efficient laser-driven particle acceleration. Using light interference patterns instead of physical targets allows for better control and increased energy transfer.

The team sees this as just the beginning of the new technique. "This research shows how new, high-performance lasers systems utilizing multi-beam coupling can be developed," says senior author Kodama. "This means that the method may soon appear in biology departments or fusion power plants."
The work is published in Nature Communications as "Enhancing laser beam performance by interfering intense laser beamlets." (DOI: 10.1038/s41467-019-10997-1)

Osaka University

Related Electrons Articles:

Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab