Nav: Home

Balancing beams: Multiple laser beamlets show better electron and ion acceleration

July 24, 2019

Osaka, Japan - A research team led by Osaka University showed how multiple overlapping laser beams are better at accelerating electrons to incredibly fast speeds, as compared with a single laser. This method can lead to more powerful and efficient X-ray and ion generation for laboratory astrophysics, cancer therapy research, as well as a path toward controlled nuclear fusion.

High-energy density physics is a field of study that deals with conditions much closer the chaotic moments immediately following the Big Bang than those commonly encountered on Earth. However, being able to produce and control intense beams of light, or very fast-moving electrons, has many practical benefits. These include the ability to make very bright X-rays needed for visualizing ultrafast deformation of matter, or conducting experiments that mimic the cosmological conditions near the surface of a star.

However, it is often tricky to keep efficiently accelerating electron beams with intense laser beams because of complex interactions between the laser and electrons. Previously, very expensive optics or patterned targets were required to transfer laser energy to the electron beam energy. In a new study, researchers at Osaka University showed how splitting the laser beam into four coherent smaller beams, called beamlets, allows more energy to be transferred to electrons. This was accomplished by creating specific light interference patterns that keep the electrons on track.

"Just like overlapping ripples in pond can create complex wave structures, we can use four laser beamlets to precisely control the environment to best accelerate the electrons," explains first author Morace. They found that the simultaneous irradiation of multiple laser beams at a single point allows for highly efficient laser-driven particle acceleration. Using light interference patterns instead of physical targets allows for better control and increased energy transfer.

The team sees this as just the beginning of the new technique. "This research shows how new, high-performance lasers systems utilizing multi-beam coupling can be developed," says senior author Kodama. "This means that the method may soon appear in biology departments or fusion power plants."
The work is published in Nature Communications as "Enhancing laser beam performance by interfering intense laser beamlets." (DOI: 10.1038/s41467-019-10997-1)

Osaka University

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at