New model by CHOP researchers identifies noncoding mutations across five pediatric cancers

July 24, 2020

Philadelphia, July 24, 2020--Researchers at Children's Hospital of Philadelphia (CHOP) have developed a new computational algorithm that has, for the first time, identified a spectrum of mutations in the noncoding portion of the human genome across five major pediatric cancers. The study, which was published today in Science Advances, used the algorithm to analyze more than 500 pediatric cancer patients' mutations and gene expression profiles to develop a comprehensive list of potentially cancer-causing mutations.

"Noncoding mutations are very important because the noncoding portion of the genome typically regulates how genes are turned on and off, much like a control switch, which has implications for the uncontrolled growth that occurs in cancer," said Kai Tan, PhD, Professor of Pediatrics at CHOP and senior author of the study. "However, these regions are also challenging to study, and our knowledge about them not as developed as that of coding regions. Our computational model has identified a set of targets in pediatric cancers that we hope to study further and eventually move to clinical practice."

The researchers developed a computation tool called PANGEA (predictive analysis of noncoding genomic enhancer/promoter alterations) to analyze noncoding mutations and their impact on gene expression in more than 500 pediatric cancer patients who had five major types of pediatric cancer: B cell acute lymphoblastic leukemia (B-ALL), acute myeloid leukemia (AML), neuroblastoma, Wilms tumor, and osteosarcoma. PANGEA identified all types of mutations that are associated with gene expression changes, including single nucleotide variants, small indels, copy number variations, and structural variants.

Previous studies on noncoding mutations have focused on single nucleotide variants and small indels, which are insertions or deletions of bases in the genome that are relatively short in length. However, structural variants are regions of DNA much larger in size - 1 kilobase or larger - a quality that makes them more difficult to identify but also more likely to contribute to changes in gene regulation that lead to cancer.

Using PANGEA, the researchers found that structural variants are indeed the most frequent cause of potentially cancer-causing mutations and identified 1,137 structural variants that affect the expression of more than 2,000 genes across the five pediatric cancer types.

In analyzing the data, the researchers found that coding and noncoding mutations affect distinct sets of genes and pathways, which is likely due to the different genomic locations of these two types of genes. The researchers found that genes involved in metabolism - the rewiring of which is a hallmark of cancer - are more frequently affected by noncoding mutations. However, it is unclear to what degree noncoding mutations facilitate metabolism rewiring in the five cancer types the researchers studied.

"Our results highlight the need for comparative analysis of both coding and noncoding mutations, which might reveal novel cancer-related genes and pathways," said Tan. "Identifying putative mutations is a starting point that will facilitate experimental work to validates these predictions."
-end-
This work was supported by grants from the National Institutes of Health, including the National Cancer Institute and the National Institute of General Medical Sciences.

B. He et al. "Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers," Science Advances, July 24, 2020. DOI: 10.1126/sciadv.aba3064

About Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 564-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Children's Hospital of Philadelphia

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.