Wrong number of fingers leads down wrong track

July 24, 2020

Have you ever wondered why our hands have five fingers? And what about amphibians? They usually only have four. Until now it was assumed that this was already the case with the early ancestors of today's frogs and salamanders, the Temnospondyli. However, a new find of the crocodile-like Temnospondyl Metoposaurus krasiejowensis from the late Triassic (about 225 million years old) in Poland shows five metacarpal bones and thus five fingers. As the researchers from the Universities of Bonn and Opole (Poland) note, this finding is very important, because until now, fossil animal tracks may have been wrongly assigned. The results have now been published in the Journal of Anatomy.

Modern amphibians usually have four fingers on the forelimb (and never more), which is called a "four-rayed hand", as opposed to our five-rayed hand. Of all groups of terrestrial vertebrates, amphibians show the greatest variation in the number of frontfingers Reptiles are the most conservative and usually have five. In birds, the finger bones in the wing have been lost completely. In mammals, the number of toes in the forelimb also varies greatly: Primates and raccoons have five, in horses only the third has survived, while in cattle and other even-toed ungulates fingers three and four remain. What they all have in common, however, is that this loss of toes or fingers originates from a five-ray pattern, which is why amphibians cannot be the ancestors of all these terrestrial vertebrate groups.

Exact number of toes is controversial

It has been known for some time that the earliest quadrupeds had significantly more fingers than five, such as Acanthostega, which had eight in the forelimb, or Ichthyostega with seven in the hind foot. As early as 300 million years ago, all but the five-fingered forms became extinct. The five-ray pattern was then retained in the real land animals, but was reduced again and again (see horses). The ancestors of today's amphibians, the Temnospondyli, presented contradictory evidence of skeletons with four fingers, but also tracks that had five.

Temnospondyli is an important group of the early, very diverse quadrupeds. Some temnospondyls became as big as crocodiles, others were rather small. However, like all amphibians, they were dependent on water during their larval stage. Their most famous representatives include Eryops or Mastodonsaurus. "It's also important to understand the evolution of modern amphibians, as this group probably evolved from the Temnospondyli," says Dr. Dorota Konietzko-Meier from the Institute for Geosciences at the University of Bonn, who discovered and prepared the left forelimb of a Metoposaurus krasiejowensis in Krasiejów (southwest Poland).

However, despite the long history of research, the exact number of fingers in Metoposaurus and other temnospondyls is still controversial. "It's remarkable that even in the case of the very well-researched Eryops, the skeletal reconstruction exhibited at the Muséum National d'Histoire Naturelle in Paris has five fingers, while only four fingers can be seen at the National Museum of Natural History in Washington," says Ella Teschner, a doctoral student from Bonn and Opole. Lately, science has assumed that, similar to most modern amphibians, all Temnospondyli have only four toes in their forelimbs. This resulted in the five-toed footprints common in the Permian and Triassic periods being almost automatically assumed to not belong to Temnospondyli.

"The find from the famous Upper Triassic site Krasiejów in Poland therefore offers a new opportunity to study the architecture and development of the hand of the early quadrupeds," says paleontologist Prof. Dr. Martin Sander from the University of Bonn. A considerably broader view of the entire group of Temnospondyli did not show a clear trend with regard to the five-ray pattern and suggested that the number of digits was not as limited in the phylogenetic context as was assumed. "Evidently, the temnospondyls were already experimenting with the four-ray pattern, and the five-ray pattern died out before the emergence of modern amphibians," adds Sander.

Five fingers on each hand?

"Even if the ossification of five metacarpal bones described here was only a pathology, it still shows that a five-ray pattern was possible in Temnospondyli," says Konietzko-Meier. However, it could not be assumed with certainty that the reduction in the number of fingers/digits from five to four always affected the fifth place on the hand in these fossil taxa. The possibility that some of the four-fingered taxa were caused by the loss of the first ray cannot be excluded. Sander: "The new finding of a five-fingered hand is particularly important for the interpretation of tracks, as it shows that a five-fingered forefoot print could also belong to the Temnospondyli and thus indicate a considerably wider distribution area of these animals."

These results are also of general importance, since limb development plays an important role in evolutionary biology and medicine, and fossils may therefore provide important information for the evaluation of theories of hand development.
Publication: Dorota Konietzko-Meier, Elzbieta M. Teschner, Adam Bodzioch, P. Martin Sander: Pentadactyl manus of the Metoposaurus krasiejowensis from the Late Triassic of Poland, the first record of pentadactyly among Temnospondyli, Journal of Anatomy, DOI:10.1111/joa.13276

Media contact:

Dr. Dorota Konietzko-Meier
Institut für Geowissenschaften
Universität Bonn
Tel. 0228/73-60043
E-mail: dmeier@uni-bonn.de

Prof. Dr. Martin Sander
Institut für Geowissenschaften
Universität Bonn
Tel. 0228/733105
E-mail: martin.sander@uni-bonn.de

University of Bonn

Related Amphibians Articles from Brightsurf:

In the Cerrado, topography explains the genetic diversity of amphibians more than land cover
Study shows that a tree frog endemic to a mountainous region of the Brazilian savanna is unable to disperse and find genetically closer mates when the terrain is rugged, potentially endangering survival of the species

Earliest example of a rapid-fire tongue found in 'weird and wonderful' extinct amphibians
Fossils of bizarre, armored amphibians known as albanerpetontids provide the oldest evidence of a slingshot-style tongue, a new Science study shows.

A species identified in 2016 as an ancient form of chameleon was misidentified at that time, say researchers
A species identified in 2016 as an ancient form of chameleon was misidentified at that time, say researchers, many of whom were part of the original 2016 report.

Venom glands similar to those of snakes are found for first time in amphibians
Brazilian researchers discover that caecilians, limbless amphibians resembling worms or snakes that emerged some 150 million years before the latter, can probably inject venom into their prey while biting.

Climate crisis ages fish, amphibians and reptiles
Climatic conditions are changing at an unprecedented rate, affecting mainly fish, amphibians and reptiles, ectothermic animals that are unable to generate their own internal heat.

Dehydration increases amphibian vulnerability to climate change
Amphibians have few options to avoid the underappreciated one-two punch of climate change, according to a new study from Simon Fraser University researchers and others.

First evidence of snake-like venom glands found in amphibians
Caecilians are limbless amphibians that can be easily mistaken for snakes.

'Fang'tastic: researchers report amphibians with snake-like dental glands
Utah State University biologist Edmund 'Butch' Brodie, Jr. and colleagues from Brazil's Butantan Institute describe oral glands in a family of terrestrial caecilians, serpent-like amphibians related to frogs and salamanders.

Microplastics affect the survival of amphibians and invertebrates in river ecosystems
In collaboration with the National Museum of Natural Sciences (CSIC) in Madrid, the UPV/EHU's Stream Ecology research group has conducted two parallel studies to look at how the larvae of one freshwater amphibian and one invertebrate evolved during 15 days' exposure to microplastics at different concentrations.

Zoology: Biofluorescence may be widespread among amphibians
Biofluorescence, where organisms emit a fluorescent glow after absorbing light energy, may be widespread in amphibians including salamanders and frogs, according to a study in Scientific Reports.

Read More: Amphibians News and Amphibians Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.