USTC made breakthrough in the Sb2(S,Se)3 solar cell efficiency

July 24, 2020

A research group led by Prof. CHEN Tao and Prof. ZHU Changfei, and their collaborator Prof. HAO Xiaojing at UNSW, developed a hydrothermal deposition method for the synthesis of antimony selenosulfide for solar cell applications. With this absorber material, the solar cell break the 10% benchmark efficiency barrier. This result has been published in Nature Energy entitled "Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency".

Antimony selenosulfide, Sb2(S,Se)3, as the ROHS-compliant and earth-abundant light harvesting material, has received increasing interests during the past few years. The band gap of Sb2(S,Se)3 is tunable in the range of 1.1-1.7 eV, satisfying the requirement for optimal sunlight harvesting. In addition, Sb2(S,Se)3 possesses high extinction coefficient and the film thickness of about 500 nanometers can absorb sufficient light irradiation. With these advantages, the Sb2(S,Se)3 is a promising energy material for the applications of light-weight and portable electricity generation devices.

Consider that Sb2(S,Se)3 is consisted of earth-abundant elements and with the excellent stability, the improvement in breaking 10% benchmark efficiency will set a ground for commercialization path. In this study, the authors found that the hydrothermal deposition at supercritical condition enables the generation of compact and flat film with homogeneous element distribution in the lateral direction. These superior characteristics allow the efficient carrier transport and suppression of the detrimental recombination. With further optimizations of the band gap, cation/anion ratio, crystal orientation and defect properties, the device successfully achieves a record power conversion efficiency.

The reviewer of this paper highly praised this work, commenting that "This paper presents a landmark efficiency value for Sb2(S,Se)3 solar cells breaking the 10% barrier.", "This achievement sheds new light on the investigation and application of Sb2(S,Se)3 ...".

The co-first authors of this articles are Dr. RONG feng, Dr. WANG Xiaomin and LIAN Weitao, from the School of Chemistry and Materials Science of University of Science and Technology of China. The co-corresponding authors are ZHU Changfei (USTC), HAO Xiaojing (UNSW) and CHEN Tao (USTC). Collaborators also include Prof. YANG Shangfeng at USTC, Prof. XING Guichuan at University of Macau, Prof. CHEN Shiyou at the East China Normal University and so on.
This research was supported by Ministry of Science and Technology of the People's Republic of China, National Natural Science Fundation and Hefei National Laboratory for Physical Sciences at the Microscale.

University of Science and Technology of China

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to