Nav: Home

How gene silencing works in plants

July 25, 2017

The group of Doctor Myriam Calonje Macaya from the Institute of Plant Biochemistry and Photosynthesis (IBVF), a mixed centre from the University of Seville and the Spanish National Research Council (CSIS), in collaboration with the group of Franziska Turck from the Max Planck Institute for Plant Breeding Research from Cologne, have recently published a study in Genome Biology that means an advance in the knowledge of epigenetic regulation by means of Polycomb-group proteins in plants.

All the cells in an organism contain the same information in their DNA so that, in order that two different cellular types can exist and that there can be two different development processes, the genes that are not needed at a specific moment have to be switched off. This process is what is known as gene silencing.

"When a seed is created, a great number of its genes are silenced until the plant is adult and needs their activity", explains Dr Calonje. This repressed or silenced state of the genes is transmitted to the daughter cells after division so that a cellular memory is established. The Polycomb-group (PcG) proteins participate in this process. These proteins are organised into two complexes, PRC1 and PRC2, which incorporate modifications in the histones that, together with the DNA, constitute the chromatin. The histone modifications do not alter the DNA sequence, but do alter the structure of the chromatin, which affects the expression of the genes.

Gene silencing controlled by marks in the chromatin occurs in both animals and plants. The PcG complexes were first characterised in animals; PRC1 modifies the histone H2A via monoubiquitination, and PRC2 has trimethyltransferase activity on the histone H3. Due to the different results obtained from animals, for more than a decade it was that the PcG complex action mechanism in plants was similar to that observed in animals, in which the trimethylation mark established by the PRC2 serves to anchor the PRC1, which at the same time has a monoubiqutin effect on the H2A. Scientists like Zhou, Romero-Campero and their collaborators researched the localisation of these modifications of the genome in wild and mutant plants to determine if this sequence happened, but they found that it did not. The activity of the PRC2 is dispensable for establishing monoubiquitination marks; what is more, the inverse sequence is required for the majority of genes.

"This study supports a change in the paradigm of a decade that was taking the understanding of PcG function in plants nowhere", states Dr Calonje.

This study was carried out using the plant Arabidopsis thaliana, but the experts assure that the findings can be extrapolated to other plants, which would mean future biotechnological applications for physiological improvement and development of plants.
-end-


University of Seville

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...