Nav: Home

Easy-Bake fossils

July 25, 2018

It takes a long time to make a fossil. The fossilized dinosaur bones you see in museums spent tens of millions of years buried deep underground, transformed by heat, pressure, and chemical reactions. But scientists have discovered a new way to simulate key fossilization processes in a lab in about twenty-four hours. That means that scientists will be able to build a better idea of how fossilization works and what kinds of materials, from feathers and skin to tiny molecules like proteins, can become fossils, and which ones can't.

"Paleontologists study fossils--we interpret them to learn about the evolution and biology of extinct animals. But the fossil record yields data that can be hard to interpret. For us to answer our questions, we need to understand how fossils form," says Evan Saitta, a Field Museum post-doctoral researcher and lead author of a new paper in Palaeontology. "The approach we use to simulate fossilization saves us from having to run a seventy-million-year-long experiment," explains Saitta, who worked on this project as part of his PhD at the University of Bristol under Jakob Vinther.

Scientists often learn about the fossilization process by examining naturally-occurring fossils and chemically analyzing them. Saitta and his team, however, worked backwards--they found a way to improve simulations of the fossilization process with modern-day animal and plant specimens, and then studied the materials that survived heat and pressure mimicking what real fossils undergo.

Saitta and his research partner, Tom Kaye of the Foundation for Scientific Advancement, took samples like bird feathers, lizard limbs, and leaves and used a hydraulic press to pack them into clay tablets about the diameter of a dime. They then heated the tablets in a sealed metal tube inside a laboratory oven at over 410 degrees Fahrenheit and 3500 psi pressure. After about a day, they pulled the tablets out--and the resulting specimens bore the hallmarks of real fossils made the old-fashioned way.

"We were absolutely thrilled," says Saitta. "We kept arguing over who would get to split open the tablets to reveal the specimens. They looked like real fossils--there were dark films of skin and scales, the bones became browned. Even by eye, they looked right."

The "Easy-Bake fossils" held up under a scanning electron microscope, too. "We could see exposed melanosomes, the structures that contain the biomolecule melanin that give feathers and skin their color, and scientists have found melanosomes in real fossils too. Less stable materials, like proteins and fatty tissues, don't show up in real fossils, and they weren't present in ours either," says Saitta.

"Our experimental method is like a cheat sheet," he explains. "If we use this to find out what kinds of biomolecules can withstand the pressure and heat of fossilization, then we know what to look for in real fossils."

Saitta notes that he and his team aren't the first to attempt to mimic the fossilization process in a lab, "but I think we're the first ones to get it pretty darn close." That's in part due to the new methods devised by the researchers. Previous experimental attempts to cook up fossils in sealed tubes didn't work because the unstable biomolecules that naturally break down, leak out, and disappear during fossilization stayed trapped. "When we cut them open, a rancid-smelling goo would come out," recalls Saitta. "But in our new method, with clay, the breakdown products can leak out into the sediment, so it's a more realistic and directly comparable simulation of how fossils are made. The stuff that we don't see in real fossils goes away, and the stuff that should be there stays."

Saitta's research focuses on exceptional fossils-- ones that don't just include hard materials like bone, but also soft tissues like skin, feathers, and biomolecules. "There are some dinosaur fossils that are preserved not just with bones, but with a dark carbonaceous film of feathers," explains Saitta. "These fossils tell us about the evolution of birds and feathers, so it's important to understand how feathers preserve."

Saitta and his co-authors, Kaye and the University of Bristol's Jakob Vinther, are excited by the possibilities that their new experimental method unlocks. "With the ideas we have now, we could do ten years' worth of research," says Saitta. ""We're beginning to get into a gold rush--there are lots of claims of fossilized biomolecules. We're always looking for them and trying to find out what they'll tell us about life in the past."

Field Museum

Related Fossils Articles:

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.
Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.
Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.
Exceptional fossils may need a breath of air to form
New research led by The University of Texas at Austin has found that a long held belief by paleontologists about the fossilization process may be wrong.
New 'king' of fossils discovered in Australia
Fossils of a giant new species from the long-extinct group of sea creatures called trilobites have been found on Kangaroo Island, South Australia.
Two tiny beetle fossils offer evolution and biogeography clues
Recently, an international team led by Dr. CAI Chenyang, from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, reported two new and rare species of the extant family Clambidae from Burmese amber: Acalyptomerus thayerae Cai and Lawrence, 2019, and Sphaerothorax uenoi Cai and Lawrence, 2019.
Newly described fossils could help reveal why some dinos got so big
A new, in-depth anatomical description of the best preserved specimens of a car-sized sauropod relative from North America could help paleontologists with unraveling the mystery of why some dinosaurs got so big.
Lilly Pilly fossils reveal snowless Snowy Mountains
Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.
Molecular fossils confirm Dickinsonia as one of Earth's earliest animals
By identifying specific biomarkers preserved alongside fossils of oval-shaped life forms from the Ediacaran Period, fossils from which are typically considered one of the greatest mysteries in paleontology, researchers say the ovular organism is not a fungus or protist, as some have thought, but an early animal.
Fossils reveal diverse mesozoic pollinating lacewings
A research group led by professor WANG Bo from the Nanjing Institute of Geology and Palaeontology has provided new insight into the niche diversity, chemical communication, and defense mechanisms of Mesozoic pollinating insects.
More Fossils News and Fossils Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: Support Radiolab today at