Nav: Home

Yellowstone super-volcano has a different history than previously thought

July 25, 2018

The long-dormant Yellowstone super-volcano in the American West has a different history than previously thought, according to a new study by a Virginia Tech geoscientist.

Scientists have long thought that Yellowstone Caldera, part of the Rocky Mountains and located mostly in Wyoming, is powered by heat from the Earth's core, similar to most volcanoes such as the recently active Kilauea volcano in Hawaii. However, new research published in Nature Geoscience by Ying Zhou, an associate professor with the Virginia Tech College of Science's Department of Geosciences, shows a different past.

"In this research, there was no evidence of heat coming directly up from the Earth's core to power the surface volcano at Yellowstone," Zhou said. "Instead, the underground images we captured suggest that Yellowstone volcanoes were produced by a gigantic ancient oceanic plate that dove under the Western United States about 30 million years ago. This ancient oceanic plate broke into pieces, resulting in perturbations of unusual rocks in the mantle which led to volcanic eruptions in the past 16 million years."

The eruptions were very explosive, Zhou added. A theoretical seismologist, Zhou created X-ray-like images of the Earth's deep interior from USArray - part of the Earthscope project funded by the National Science Foundation - and discovered an anomalous underground structure at a depth of about 250 to 400 miles right beneath the line of volcanoes.

"This evidence was in direct contradiction to the plume model," Zhou said.

In her study, Zhou found the new images of the Earth's deep interior showed that the oceanic Farallon plate, which used to be where the Pacific Ocean is now, wedged itself beneath the present-day Western United States. The ancient oceanic plate was broken into pieces just like the seafloor in the Pacific today. A section of the subducted oceanic plate started tearing off and sinking down to the deep earth.

The sinking section of oceanic plate slowly pushed hot materials upward to form the volcanoes that now make up Yellowstone. Further, the series of volcanoes that make up Yellowstone have been slowly moving, achingly so, ever since. "The process started at the Oregon-Idaho border about 16 million years ago and propagated northwestward, forming a line of volcanoes that are progressively younger as they stretched northwest to present-day Wyoming," Zhou added.

The previously-held plume model was used to explain the unique Yellowstone hotspot track - the line of volcanoes in Oregon, Idaho, and Wyoming that dots part of the Midwest. "If the North American plate was moving slowly over a position-fixed plume at Yellowstone, it will displace older volcanoes towards the Oregon-Idaho border and form a line of volcanoes, but such a deep plume has not been found." Zhou said. So, what caused the track? Zhou intends to find out.

"It has always been a problem there, and scientists have tried to come up with different ways to explain the cause of Yellowstone volcanoes, but it has been unsuccessful," she said, adding that hotspot tracks are more popular in oceans, such as the Hawaii islands. The frequent Geyser eruptions at Yellowstone are of course not volcanic eruptions with magna, but due to super-heated water. The last Yellowstone super eruption was about 630,000 years ago, according to experts. Zhou has no predictions on when or if Yellowstone could erupt again.

The use of the X-ray-like images for this study is unique in itself. Just as humans can see objects in a room when a light is on, Zhou said seismometers can see structures deep within the earth when an earthquake occurs. The vibrations spread out and create waves when they hit rocks. The waves are detected by seismometers and used in what is known as diffraction tomography.

"This is the first time the new imaging theory has been applied to this type of seismic data, which allowed us to see anomalous structures in the Earth's mantle that would otherwise not be resolvable using traditional methods," Zhou said.

Zhou will continue her study of Yellowstone. "The next step will be to increase the resolution of the X-ray-like images of the underground rock," she added.

"More detailed images of the unusual rocks in the deep earth will allow us to use computer simulation to recreate the fragmentation of the gigantic oceanic plate and test different scenarios of how rock melting and magma feeding system work for the Yellowstone volcanoes."
-end-


Virginia Tech

Related Volcanic Eruptions Articles:

'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
Rare volcanic rocks lift lid on dangers of little-studied eruptions
Unusual rocks discovered on a remote mountainside have alerted scientists to the dangers posed by a little-studied type of volcano.
Revising the history of big, climate-altering volcanic eruptions
Researchers have developed a new isotopic method to analyze the recent history of large stratospheric volcanic eruptions, using 2,600 years' worth of records contained in ice cores from Antarctica. Stratospheric eruptions can launch sulfate particles more than 6 miles above Earth's surface, where they reflect sunlight and temporarily cool the planet.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
Using artificial intelligence to understand volcanic eruptions from tiny ash
Scientists led by Daigo Shoji from the Earth-Life Science Institute (Tokyo Institute of Technology) have shown that an artificial intelligence program called a Convolutional Neural Network can be trained to categorize volcanic ash particle shapes.
Repeating seismic events offer clues about Costa Rican volcanic eruptions
Repeating seismic events--events that have the same frequency content and waveform shapes--may offer a glimpse at the movement of magma and volcanic gases underneath Turrialba and Poas, two well-known active volcanoes in Costa Rica.
Detecting volcanic eruptions
Geophysicist Robin Matoza leads a case study of an eruption of Calbuco in Chile to evaluate data delivered by infrasound sensors
Mars' oceans formed early, possibly aided by massive volcanic eruptions
A new theory about how oceans and volcanoes interacted during the early history of Mars supports the idea that liquid water was once abundant and may still exist underground.
New insight into how magma feeds volcanic eruptions
A novel research study by scientists at the University of Liverpool has provided new insights into how molten rock (magma) moves through the Earth's crust to feed volcanic eruptions.
More Volcanic Eruptions News and Volcanic Eruptions Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab