Nav: Home

Rotavirus cell invasion triggers a cacophony of calcium signals

July 25, 2019

To successfully set off disease, rotavirus, a virus that causes severe diarrhea and vomiting in children around the world, must invade cells of the gastrointestinal track and trigger a surge of calcium inside the cells. How this surge occurs has not been clarified, but a report in the journal Scientific Reports released today shows in cinematic detail the dynamic changes in calcium that follow rotavirus invasion.

Using time-lapsing imaging and other experimental approaches, researchers at Baylor College of Medicine and Indiana University reveal that rotavirus induces hundreds of discrete and highly dynamic calcium spikes that increase during peak infection. The calcium spikes can be attenuated by genetically knocking down rotavirus protein NSP4, which is known to disturb calcium balance within cells. The spikes originate from calcium released from the endoplasmic reticulum, a specialized structure within cells, into the cytoplasm of the cell.

The study's findings open new ways to better understand what the virus does to cause disease.
-end-
Dr. Joseph Hyser, the corresponding author of this work, is available for interview upon request. Contact Dipali Pathak in the Office of Communications at Baylor College of Medicine at 713-747-4710 or pathak@bcm.edu to schedule an interview or for more information.

Baylor College of Medicine

Related Calcium Articles:

Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.
Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.
New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.
Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.
Memory molecule limits plasticity by calibrating calcium
Researchers at the Max Planck Florida Institute for Neuroscience in collaboration with researchers at Emory University and the National Institute of Environmental Health Sciences, have for the first time identified a novel role for the CA2-enriched protein RGS14 and provided insights into the mechanism by which it limits plasticity.
A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.
The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.
Communication via calcium wave
The hormone auxin is a key regulator of plant growth and development.
A simple trick for modeling calcium
Calcium ions enable cells to communicate with one another, allowing neurons to interact, muscles to contract, and the heart's muscle cells to synchronize and beat.
Calcium may play a role in the development of Parkinson's disease
Researchers have found that excess levels of calcium in brain cells may lead to the formation of toxic clusters that are the hallmark of Parkinson's disease.
More Calcium News and Calcium Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.