Rotavirus cell invasion triggers a cacophony of calcium signals

July 25, 2019

To successfully set off disease, rotavirus, a virus that causes severe diarrhea and vomiting in children around the world, must invade cells of the gastrointestinal track and trigger a surge of calcium inside the cells. How this surge occurs has not been clarified, but a report in the journal Scientific Reports released today shows in cinematic detail the dynamic changes in calcium that follow rotavirus invasion.

Using time-lapsing imaging and other experimental approaches, researchers at Baylor College of Medicine and Indiana University reveal that rotavirus induces hundreds of discrete and highly dynamic calcium spikes that increase during peak infection. The calcium spikes can be attenuated by genetically knocking down rotavirus protein NSP4, which is known to disturb calcium balance within cells. The spikes originate from calcium released from the endoplasmic reticulum, a specialized structure within cells, into the cytoplasm of the cell.

The study's findings open new ways to better understand what the virus does to cause disease.
-end-
Dr. Joseph Hyser, the corresponding author of this work, is available for interview upon request. Contact Dipali Pathak in the Office of Communications at Baylor College of Medicine at 713-747-4710 or pathak@bcm.edu to schedule an interview or for more information.

Baylor College of Medicine

Related Calcium Articles from Brightsurf:

A new strategy for the greener use of calcium carbide
Computational chemists from St Petersburg University and the Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences have developed a new strategy for using calcium acetylide in the synthesis of organic compounds.

New link between calcium and cardiolipin in heart defects
To function properly, the heart needs energy from cells' powerhouses, the mitochondria.

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.

Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.

Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.

Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.

New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.

Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.

A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.

The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.

Read More: Calcium News and Calcium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.