Nav: Home

Shape shifting protocells hint at the mechanics of early life

July 25, 2019

Inspired by the processes of cellular differentiation observed in developmental biology, an interdisciplinary team of researchers at the University of Bristol have demonstrated a new spontaneous approach to building communities of cell-like entities (protocells) using chemical gradients.

In a new study published today in the journal Nature Communications, Professor Stephen Mann from Bristol's School of Chemistry, together with colleagues Dr Liangfei Tian, Dr Mei Li, and Dr Avinash Patil in the Bristol Centre for Protolife Research, and Professor Bruce Drinkwater from the Faculty of Engineering used a chemical gradient to transform a uniform population of small droplets into a diverse community of artificial cells.

The team first used ultrasonic waves to create regular rows of thousands of droplets containing the energy storage molecule ATP. They then allowed shape-shifting molecules (artificial morphogens) to diffuse in one direction through the population.

As the morphogens came into contact with the droplets, the droplets transformed row by row into membrane-bounded protocells with different shapes, chemical compositions and enzyme activities. How the droplets changed was dependent on the local morphogen concentration in the advancing chemical gradient.

Waves of differentiation were seen to travel across the population, leaving a pattern of differentiated protocells such that a complex and ordered community emerged spontaneously from the homogeneous population.

Professor Mann said: "This work opens up a new horizon in protocell research because it highlights the opportunities for spontaneously constructing protocell communities with graded structure and functionality.

"Although the research is just beginning, the results provide a step towards developing artificial cell platforms for chemical sensing and monitoring under non-equilibrium (flow-based) conditions."

Dr Tian added: "As droplet-based protocells have been proposed as plausible progenitors to membrane-bounded protocells on the early Earth, our work could have implications for contemporary theories of the origin of life.

"In particular, as chemical gradients produce protocell diversity from uniform populations, maybe a similar mechanism was responsible for the emergence of functional complexity in ancient proto-living systems."
-end-


University of Bristol

Related Research Articles:

More Research News and Research Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab