Nav: Home

Supercomputers use graphics processors to solve longstanding turbulence question

July 25, 2019

Advanced simulations have solved a problem in turbulent fluid flow that could lead to more efficient turbines and engines.

When a fluid, such as water or air, flows fast enough, it will experience turbulence - seemingly random changes in velocity and pressure within the fluid.

Turbulence is extremely difficult to study but is important for many fields of engineering, such as air flow past wind turbines or jet engines. Understanding turbulence better would allow engineers to design more efficient turbine blades, for example, or make more aerodynamic shapes for Formula 1 cars.

However, current engineering models of turbulence often rely upon 'empirical' relationships based on previous observations of turbulence to predict what will happen, rather than a full understanding of the underlying physics.

This is because the underlying physics is immensely complicated, leaving many questions that seem simple unsolved.

Now, researchers at Imperial College London have used supercomputers, running simulations on graphics processors originally developed for gaming, to solve a longstanding question in turbulence.

Their result, published today in the Journal of Fluid Mechanics, means empirical models can be tested and new models can be created, leading to more optimal designs in engineering.

Co-author Dr Peter Vincent, from the Department of Aeronautics at Imperial, said: "We now have a solution for an important fundamental flow problem. This means we can check empirical models of turbulence against the 'correct' answer, to see how well they are describing what actually happens, or if they need adjusting."

The question is quite simple: if a turbulent fluid is flowing in a channel and it is disturbed, how does that disturbance dissipate in the fluid? For example, if water was suddenly released from a dam into a river and then shut off, what affect would that pulse of dam water have on the flow of the river?

To determine the overall 'average' behaviour of the fluid response, the team needed to simulate the myriad smaller responses within the fluid. They used supercomputers to run thousands of turbulent flow simulations, each requiring billions of calculations to complete.

Using these simulations, they were able to determine the exact parameters that describe how the disturbance dissipates in the flow and determined various requirements that empirical turbulence models must satisfy.

Co-author Professor Sergei Chernyshenko, from the Department of Aeronautics at Imperial, said: "From my first days studying fluid mechanics I had some fundamental questions that I wanted to know the answers to. This was one of them, and now after 40 years I have the answer."
-end-


Imperial College London

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.