Nav: Home

Study in mice advances combination immune therapy for ovarian cancer

July 25, 2019

Delivering two federally approved immunity-altering drugs together significantly extended the lives of mice injected with human ovarian cancer cells, an early proof-of-concept experiment that may advance treatment for the most deadly -- although rare -- gynecologic malignancy in humans, according to scientists at the Johns Hopkins Kimmel Cancer Center who performed the research.

The combination treatment appears to improve survival by changing the natural ratio of different types of immune system "clean up" cells called macrophages, a therapy target that's received less attention than other immune system components but could hold promise for patients with various types of malignancies, the investigators say.

"Together these drugs could one day make some headway where other therapies have failed," says study leader Cynthia Zahnow, Ph.D., associate professor of oncology at the Johns Hopkins Kimmel Cancer Center.

A report on the findings was published online in the July issue of Cancer Research.

Over the past decade, Zahnow notes, several cancer clinical trials have shown promise for a class of drugs known as epigenetic therapies, which remove chemical groups on DNA and proteins that affect the activity of cancer-related genes. Although the drugs mainly battle cancer by returning the function of cancer-fighting genes that have become suppressed by the disease itself, researchers have also discovered that the drugs may trigger an anti-viral, immune response that may help the body attack tumors.

A different class of drugs, known as polyamine-blocking therapies, has also shown potential in inhibiting tumor growth in animal models by preventing the synthesis and/or transport of molecules necessary for cancer cells to thrive. These agents also affect the immune system, with studies showing that they alter the makeup of immune cell populations in tumor microenvironments.

However, Zahnow says neither class of drugs alone has been shown effective against ovarian cancer, a disease that kills about 20,000 women per year in the U.S. even though it accounts for only 3% of cancers in women.

Because both drug classes alter immune cell behavior, Zahnow, co-study leader Robert Casero Jr., Ph.D., professor of oncology, and their colleagues reasoned that they could be more effective at fighting ovarian cancer when combined.

The researchers tested this idea in a mouse model in which the animals' abdominal cavities were injected with human ovarian cancer cells to generate disseminated disease often seen in women with ovarian cancer. Over the course of several weeks, the rodents developed ascites, or fluid collections in their abdomens full of cancer and immune cells, as a consequence of cancer progression. By sampling the fluid weekly, the researchers obtained a window on tumor growth and immune activity simultaneously over time.

In a set of experiments, three days after the mice were injected with cancer cells, the researchers put the mice on one of four treatment regimens: injections of saline (as a "control" treatment); an epigenetic drug known as 5-azacytidine (AZA); a polyamine-blocking drug known as 2-difluoromethylornithine (DFMO); or a combination of AZA and DFMO. Currently, AZA is FDA approved to treat a bone marrow disorder known as myelodysplastic syndrome, and DFMO is FDA-approved for African sleeping sickness.

Their results showed that mice that received the single agents lived slightly longer compared with mice that received just saline -- an average of 44 days after they were injected with cancer cells. However, mice treated with the combination therapy lived about 25% longer, to 59 days.

Examining cancer and immune system cells present in the animals' ascites showed that the drug combination had no effect on most immune cell types compared with treatment with the single agents. However, there were two exceptions.

They found increases in cytotoxic lymphocytes, a type of white blood cell, including both T cells and natural killer cells, which are tumor-fighting immune system cells, but Zahnow said the effect didn't seem large enough to explain the significant increase in survival of the treated mice.

More importantly, they said, they found a greater change in the ratio of two types of macrophages, immune cells that digest foreign material and cell debris while regulating other immune processes. Previous studies have shown that M1 macrophages can protect against tumor growth and progression, while M2 macrophages promote tumor growth.

While the combined treatment greatly reduced the total number of macrophages, it left more M1 macrophages than M2. When the researchers blocked the activity of all macrophages with an antibody that inhibits them, the combination therapy lost its survival effect, demonstrating the importance of this M1 population of immune cells to fight the cancer.

Zahnow says the combination therapy is especially promising because of the significant boost it gave to the animals' survival, but also because both agents are already approved for use to treat other conditions. "DFMO is so nontoxic that it also could provide a buffer in patients' drug regimens that would help them add other potent medications with more significant side effects," says Zahnow. Such regimens might include medications that could further offset the balance between M1 and M2 macrophages as a patient's disease returns or progresses, hallmarks of ovarian cancer.

The team is currently testing combined AZA and DFMO therapy in other animal models of cancer in which macrophages play a prominent role, including breast and pancreatic cancers.
Other Johns Hopkins researchers who participated in this study include Meghan Travers, Stephen M. Brown, Matthew Dunworth, Cassandra E. Holbert, Jackson R. Foley, Meredith L. Stone and Stephen B. Baylin.

This work was supported by the National Cancer Institute under award numbers R01CA204345 and P30CA006973. This work was also supported in part by Janssen, the Samuel Waxman Cancer Research Foundation Collaboration for a Cure Grant, the Irving A. Hansen Memorial Foundation, and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Johns Hopkins Medicine

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at