Nav: Home

Revolutionary method could bring us much closer to the description of hyperdiverse faunas

July 25, 2019

Two hundred and sixty-one years ago, Linnaeus formalized binomial nomenclature and the modern system of naming organisms. Since the time of his first publication, taxonomists have managed to describe 1.8 million of the estimated 8 to 25 million extant species of multicellular life, somewhere between 7% and 22%. At this rate, the task of treating all species would be accomplished sometime before the year 4,000. In an age of alarming environmental crises, where taking measures for the preservation of our planet's ecosystems through efficient knowledge is becoming increasingly urgent, humanity cannot afford such dawdling.

"Clearly something needs to change to accelerate this rate, and in this publication we propose a novel approach that employs only a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen," explain the researchers behind a new study, published in the open-access journal Deutsche Entomologische Zeitschrift (DEZ).

In standardized practices, it is required that experts conduct plenty of time- and labor-consuming analyses, in order to provide thorough descriptions of both the morphology and genetics of individual species, as well as a long list of characteristic features found to differentiate each from any previously known ones. However, the scientists argue, at this stage, it is impossible to pinpoint distinct morphological characters setting apart all currently known species from the numerous ones not yet encountered. To make matters worse, finding human and financial resources for performing this kind of detailed research is increasingly problematic.

This holds especially true when it comes to hyperdiverse groups, such as ichneumonoid parasitoid wasps: a group of tiny insects believed to comprise up to 1,000,000 species, of which only 44,000 were recognised as valid, according to 2016 data. In their role of parasitoids, these wasps have a key impact on ecosystem stability and diversity. Additionally, many species parasitise the larvae of commercially important pests, so understanding their diversity could help resolve essential issues in agriculture.

Meanwhile, providing a specific species-unique snippet of DNA alongside an image of the specimen used for the description of the species (i.e. holotype) could significantly accelerate the process. By providing a name for a species through a formal description, researchers would allow for their successors to easily build on their discoveries and eventually reach crucial scientific conclusions.

"If this style were to be adopted by a large portion of the taxonomic community, the mission of documenting Earth's multicellular life could be accomplished in a few generations, provided these organisms are still here," say the authors of the study.

To exemplify their revolutionary approach, the scientists use their paper to also describe a total of 18 new species of wasps in two genera (Zelomorpha and Hemichoma) known from Área de Conservación Guanacaste, Costa Rica. Currently, the team works on the treatment of related species, which still comprise only a portion of the hundreds of thousands that remain unnamed.
-end-
Original source:

Meierotto S, Sharkey MJ, Janzen DH, Hallwachs W, Hebert PDN, Chapman EG, Smith MA (2019) A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Deutsche Entomologische Zeitschrift 66(2): 119-145. https://doi.org/10.3897/dez.66.34683

Pensoft Publishers

Related Diversity Articles:

Revealing Aspergillus diversity for industrial applications
In a Feb. 14, 2017 study published in Genome Biology, an international team report sequencing the genomes of 10 novel Aspergillus species, which were compared with the eight other sequenced Aspergillus species.
Important to maintain a diversity of habitats in the sea
Researchers from University of Gothenburg and the Swedish University of Agricultural Sciences (SLU) show that both species diversity and habitat diversity are critical to understand the functioning of ecosystems.
Discovering what shapes language diversity
A research team led by Colorado State University is the first to use a form of simulation modeling to study the processes that shape language diversity patterns.
Making the switch to polarization diversity
New silicon photonic chip that offers significant improvement to the optical switches used by fiber optic networks to be presented at OFC 2017 in Los Angeles.
Deciphering the emergence of neuronal diversity
Neuroscientists at UNIGE have analysed the diversity of inhibitory interneurons during the developmental period surrounding birth.
Epigenetic diversity in childhood cancer
Tumors of the elderly carry many DNA mutations that can influence disease course.
Diversity without limits
Now, researchers at Temple and Oakland universities have completed a new tree of prokaryotic life calibrated to time, assembled from 11,784 species of bacteria.
Threatened by diversity
Psychologist Brenda Major identifies what may be a key factor in many white Americans' support for Donald Trump.
Diversity as natural pesticide
Monoculture crops provide the nutrient levels insect pests crave, explains a study led by the University of California, Davis, in the journal Nature. Returning plant diversity to farmland could be a key step toward sustainable pest control.
A missing influence in keeping diversity within the academy?
A new study of science Ph.D.s who embarked on careers between 2004 and 2014 showed that while nearly two-thirds chose employment outside academic science, their reasons for doing so had little to do with the advice they received from faculty advisors, other scientific mentors, family, or even graduate school peers.

Related Diversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...