Nav: Home

The positive and negative role of LRH-1 during inflammation

July 25, 2019

Immune cells prevent bacteria, parasites or viruses from entering the body when, for example, the intestinal epithelium is injured. They respond with restricted inflammatory reactions, which are controlled via various processes in the healthy organism. If an organism suffers from Crohn's disease, for example, the immune cells are continuously activated. The research group led by Professor Thomas Brunner at the University of Konstanz has demonstrated that the transcription factor LRH-1 plays a key role in immune cells. That this protein can actually be found in so-called T cells was already confirmed by his team several years ago. The researchers in Konstanz were now able to show that the transcription factor is responsible for ensuring that an organism's immune defence functions properly. If it is not present, no immune response is activated. The researchers view this research result as an opportunity to develop therapeutic approaches or drugs that will control the damaging immune response by inhibiting LRH-1, as in Crohn's disease or liver diseases.

A transcription factor is a protein that ensures that a gene is transcribed and a corresponding gene product is generated. It regulates the so-called gene expression process, which puts the gene's information into effect. The transcription factor LRH-1 is particularly common in the intestine and liver. The elimination of LRH-1 in the epithelial cells of these organs has little effect on them, though. However, the biologists found that the T cells, which are crucial for the immune response, hardly divide when LRH-1 is eliminated. With fatal consequences: T cells have receptors that recognize specific foreign substances. A large number of them are needed to control pathogens such as viruses, which multiply rapidly after infiltrating the body. To fight these viruses, the T cells can usually divide very quickly - even faster than cancer cells - but in a more controlled manner.

"Without the LRH-1 transcription factor, it is practically impossible to trigger immune responses. As a result, the body can no longer protect itself against pathogens", explains Thomas Brunner.

That is the negative aspect. On the positive side, however, this inhibition of the immune cell expansion can be used to treat inflammatory diseases such as Crohn's disease or hepatitis. In the process of continuously fighting either harmless bacteria or viruses, the immune system's permanent response actually damages the organs. The overall aim is to shut down this out-of-control immune response. In fact, a pharmacological inhibitor that can specifically switch off the LRH-1 transcription factor activity already exists. A test has demonstrated that it actually blocks the T cells, thereby reducing the T cell mediated diseases.

Thomas Brunner and his team confirmed that the inhibition of LRH-1 yielded the hoped for results. "In order to test whether or not the inhibitor really works, we administered it to treat experimentally induced hepatitis. It did work. The damage was reduced".
-end-
Facts:
  • The research group around Professor Thomas Brunner at the University of Konstanz discovers the role that the LRH-1 protein plays in the immune system
  • Inhibiting this protein could help treat inflammatory diseases
  • Original publication: C. Seitz; J. Huang; A.-L. Geiselhöringer; P. Galbani-Bianchi; S. Michalek; T.S. Phan; C. Reinhold; L. Dietrich; C. Schmidt; N. Corazza; E. Delgado; T. Schnalzger; K. Schoonjans; T. Brunner: The orphan nuclear receptor LRH-1/NR5a2 critically regulates T cell functions. Science Advances, 17 July 2019: Vol. 5, no. 7, eaav9732. DOI: https://doi.org/10.1126/sciadv.aav9732
  • On the discovery of LRH-1 in immune cells: https://www.ncbi.nlm.nih.gov/pubmed/28406481
  • The project was funded by the German Research Foundation (DFG).
Note to editors: You can download a photo here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/die_positive_und_negative.jpg

Caption: Detection of immune cells using specific antibodies in tissue sections of the spleen of wild type animals (left panel) and mice with T cell-specific deletion of LRH-1 (right panel). (Green: T lymphocytes, blue: B lymphozytes, red: macrophages).
Copyright: Thomas Brunner

Contact:
University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
Email: kum@uni-konstanz.de

- uni.kn/en

University of Konstanz

Related Immune Response Articles:

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.
Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.
'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.
A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.
Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.
How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.