Nav: Home

How neuromuscular connections are maintained after nerve lesions

July 25, 2019

After nerve injury, the protein complex mTORC1 takes over an important function in skeletal muscle to maintain the neuromuscular junction, the synapse between the nerve and muscle fiber. Researchers at the University of Basel's Biozentrum have now shown that the activation of mTORC1 must be tightly balanced for a proper response of the muscle to nerve injury. The study published in Nature Communications opens new insights into muscle weakness related to neuromuscular diseases or caused by ageing.

The protein complex mTORC1 promotes muscle growth and is important for the self-cleaning process of the muscle cells. The role of mTORC1 in skeletal muscle fibers in response to nerve injury has so far not been studied in detail. New insights have been provided by the research team led by Markus Rüegg at the Biozentrum of the University of Basel.

Function of mTORC1

Nerves and muscles in our body are connected by specialized synapses, called neuromuscular junctions, which transmit signals from the nerve to muscle fibers. If innervation is lost or interrupted by the injury of the nerve, muscles cannot contract anymore. However, to prepare the muscle for re-innervation by the nerve, the muscle component of the neuromuscular junction, the motor endplate, is maintained. Rüegg's research team has now more closely studied the function of mTORC1 and its upstream kinase PKB/Akt in the maintenance of the motor endplate after nerve injury using different mouse models.

The best known function of the PKB/Akt - mTORC1 signaling pathway is to promote muscle growth and the cellular self-cleaning process. «We have now been able to show that PKB/Akt and mTORC1 also play an important role in the maintenance of the neuromuscular endplate», explains Perrine Castets, first author of the study.

PKB/Akt - mTORC1 tightly balanced

After nerve damage, both PKB/Akt and mTORC1 get activated in muscle fibers. Rüegg's study demonstrates that mTORC1 should not be activated too strongly nor too little to ensure a proper response of the muscle. The underlying mechanism involves an mTORC1-dependent feedback onto the kinase PKB/Akt: «Should mTORC1 be too strongly activated, PKB/Akt is inhibited, resulting in the loss of the neuromuscular endplate. Balanced activation of both PKB/Akt and mTORC1 is required for the proper response of the muscle fiber», says Castets.

The newly described function of PKB/Akt and mTORC1 opens new perspective on how age-related muscle atrophy develops in humans. This is, likewise, induced through an alteration of neuromuscular endplates and possibly by over-activation of mTORC1. «Through this study, we now better understand the molecular mechanisms contributing to the maintenance of the neuromuscular junctions. Based on our results, we may be able to develop new approaches to potentially counteract age-related deficits and structural changes in order to better preserve the performance and functional capabilities of the muscles during ageing», says Rüegg.
-end-


University of Basel

Related Skeletal Muscle Articles:

Sea urchin protein provides insights into self-assembly of skeletal structures
Calcium carbonate combined with sea urchin proteins form tiny stacks of 'bricks' that creates a structure which provides a tough, exoskeleton defense for the sea creature.
Is the debate over coral skeletal development finally over?
A long-running debate over how coral skeletons are formed may be closer to resolution, as a new study reports that these structures form by a biologically controlled process, not one driven by chemical processes.
A stem cell gene found to command skeletal muscle regeneration
Prox1 gene has long been known to play an important role in fetal development.
Actuators inspired by muscle
To make robots more cooperative and have them perform tasks in close proximity to humans, they must be softer and safer.
A skeletal marker of physiological stress might indicate good, rather than poor, health
One of the skeletal markers that anthropologists use to decipher the past, linear enamel hypoplasia, might need to be looked at in a new light.
IOF launches new resource on rare skeletal disorders
On the occasion of Rare Disease Day, IOF has published a new online resource which provides information on more than 80 of the main rare disorders that affect the skeleton.
Skeletal muscle satellite cells and stem cells
The overall scientific objective of this conference is to provide a forum for cutting-edge work in muscle satellite and stem cells, including regulatory mechanisms controlling normal and abnormal functions of muscle stem cells in regeneration, homeostasis, hypertrophy, aging and disease.
Smooth muscle
The FASEB Smooth Muscle Conference is widely regarded as the premier forum in smooth muscle biology, and thus, attracts internationally recognized leaders in a number of fields.
Nutritional needs for skeletal health change as you age, says new scientific review
Whether you're young or old, the right nutrition can make a difference to your bone health and influence your ability to live an independent, mobile, fracture-free life into your more senior years.
Contrary to previous studies, diabetes affects diaphragm, skeletal muscle cells differently
Previous studies have shown that diabetes adversely affects breathing and respiratory function.

Related Skeletal Muscle Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...