Nav: Home

Physics of life: Motor proteins and membrane dynamics

July 25, 2019

Motility is an essential property of many cell types, and is driven by molecular motors. A Ludwig-Maximilians-Universitaet (LMU)in M has now discovered that the motor protein myosin VI contributes directly to the deformation of the cell membrane, as required for locomotion or endocytosis.

Membranes composed of a lipid bilayer define the outer surface of nucleated cells (the plasma membrane) and delimit the vital organelles within these cells, such as mitochondria and nuclei. The membrane curvature determines the three-dimensional form of these structures, and is therefore a key factor in their respective functions. Furthermore, the ability to actively deform membranes is indispensable for many cellular processes. Using a combination of experimental and theoretical approaches, LMU research groups led by Prof. Claudia Veigel (Biomedical Center) and Prof. Erwin Frey (Arnold Sommerfeld Center for Theoretical Physics), who are also members of the Munich Center for Nanoscience (CeNS), have now demonstrated that proteins called molecular motors are directly involved in the control of membrane deformation. The new findings appear in the online journal Nature Communications.

Formation and dynamics of the membrane curvature is the result of a complex interplay between many different proteins, in which the cytoskeleton - with which molecular motors interact - plays a significant part. The motor interactions enable the cell's internal skeleton to be dynamically broken down locally, and reassembled into new configurations. These processes in turn indirectly exert forces onto the cytoplasmic membrane. The motor proteins move along the various filament systems, which together comprise the cytoskeleton, transporting molecular cargos to their destinations. However, the motor proteins themselves can also act as signaling molecules. "We have now discovered a completely new type of function for one particular motor protein, called myosin VI: this motor directly engages with the components of the plasma membrane and dynamically alters its shape," says Laeschkir Würthner, joint first author of the study.

"Using fluorescent markers and super-resolution fluorescence microscopy we were able to experimentally confirm that myosin VI binds directly to the membrane. Combining these experiments with triangular-shaped gold nano-particles we also found that this interaction occurs in a remarkably selective and highly cooperative fashion - specifically at locations where the membrane curvature adopts a saddle shape. The binding sites appear at nano-pores, which are induced by thermal fluctuations. When myosin VI molecules dock at these sites, they do so in a dynamically variable, flower-like pattern, which can reach diameters of several micrometers around each pore. In our experiments, the circumference of these 'flowers' grows at a constant rate, which is directly proportional to the concentration of myosin available," Veigel explains.

The authors of the study propose that this newly discovered function of myosin-based motors is involved in important cellular processes, such as endocytosis and the formation of membrane protrusions. "We have also developed a quantitative theoretical model, which correctly describes the protein-membrane interaction and the resulting dynamics of membrane morphology," says Frey. "We believe that, in the near future, our new assay and the model that underpins it will help us to uncover other mechanisms of membrane deformation, and elucidate the universal role of membrane curvature in cellular function."

Ludwig-Maximilians-Universität München

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab