Nav: Home

Virginia Tech researchers lead breakthrough in quantum computing

July 25, 2019

The large, error-correcting quantum computers envisioned today could be decades away, yet experts are vigorously trying to come up with ways to use existing and near-term quantum processors to solve useful problems despite limitations due to errors or "noise."

A key envisioned use is simulating molecular properties. In the long run, this can lead to advances in materials improvement and drug discovery. But not with noisy calculations confusing the results.

Now, a team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer. Virginia Tech College of Science faculty members Ed Barnes, Sophia Economou, and Nick Mayhall recently published a paper in Nature Communications detailing the advancement.

Quantum computers are expected to be able to carry out certain kinds of calculations far more efficiently than the "classical" computers in use today. They are similar to classical computers, however, in that they run algorithms by applying sequences of logic gates -- in this case, "quantum gates," which together form quantum circuits -- to bits of information. For today's noisy quantum computers, the problem has been that so much noise would accumulate within a circuit that the computation would degrade and render any subsequent calculations inaccurate. Scientists have had difficulty designing circuits that are both shorter and more accurate.

The Virginia Tech team addressed this issue by developing a method that grows the circuit in an iterative way. "We start with a minimal circuit, then grow it as we add on logic gate after logic gate in short circuits until the computer finds the solution," said Mayhall, an assistant professor in the Department of Chemistry.

A second major benefit of the algorithm is that Barnes, Economou, and Mayhall designed it to adapt itself based upon the molecular system being simulated. Different molecules will dictate their own circuits, uniquely tailored to them.

The interdisciplinary collaboration between Virginia Tech's departments of Chemistry and Physics -- Barnes, Economou, and Mayhall and a team of graduate students and postdocs from both departments -- have received grants from the National Science Foundation and the U.S. Department of Energy totaling more than $2.8 million.

Virginia Tech and IBM recently established a partnership that gives the researchers access to IBM's quantum computing hardware. "Our team at Virginia Tech is really excited for the next steps in our work," said Economou, an associate professor in the Department of Physics, "which include implementing our algorithm on IBM's processors."

Virginia Tech

Related Quantum Computers Articles:

One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
Newfound superconductor material could be the 'silicon of quantum computers'
Newly discovered properties in the compound uranium ditelluride show that it could prove highly resistant to one of the nemeses of quantum computer development -- the difficulty with making such a computer's memory storage switches, called qubits, function long enough to finish a computation before losing the delicate physical relationship that allows them to operate as a group.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
More Quantum Computers News and Quantum Computers Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...