Nav: Home

Preclinical study of therapeutic strategy for Lafora disease shows promise

July 25, 2019

LEXINGTON, Ky (July 25, 2019) -- A team of scientists have designed and tested in mice a novel and promising therapeutic strategy for treating Lafora Disease (LD), a fatal form of childhood epilepsy. This new type of drug - called an antibody-enzyme fusion or AEF -- is a first-in-class therapy for LD and an example of precision medicine that has potential for treating other types of aggregate-based neurological diseases.

LD is an inherited epilepsy and neurodegenerative disorder caused by intracellular carbohydrate aggregates in the brain. LD patients develop normally until the teen years when seizures begin. Epileptic episodes become increasingly severe and more frequent, followed by rapid cognitive decline and a vegetative state. LD patients typically die within 10 years of diagnosis.

"LD is devastating for patients and their families, and currently there are no effective treatments," said Dr. Matthew Gentry of the University of Kentucky College of Medicine and a lead scientist on the study. "We've been working to define exactly what causes the disease and to develop effective therapies."

It is now understood that LD is caused by toxic carbohydrate aggregates called Lafora bodies. Structurally, the aggregates resemble plant starch, the major source of carbohydrates in the human diet.

"Amylase is an enzyme that our bodies naturally secrete in saliva and in the gut to break down the starch in our food," Gentry said. "A study from the 1970s suggested that amylase could also degrade Lafora bodies. However, we needed a way to get the amylase into brain cells, where the Lafora bodies are found."

The Gentry laboratory collaborated with Valerion Therapeutics, a clinical-stage biotechnology company with a novel antibody-based delivery platform capable of carrying active biotherapeutics into cells.

"We fused human amylase to our proprietary antibody fragment for intracellular delivery of enzyme into cells of mice genetically engineered to develop LD," said Dr. Dustin Armstrong, Valerion's Chief Scientific Officer.

This antibody-amylase fusion, called VAL-0417, virtually eliminated the Lafora bodies in LD mouse brains and other tissues.

"A seven-day continuous infusion of VAL-0417 directly into the brain restored normal brain metabolism in the LD mice, suggesting VAL-0417 could reverse the disease in humans," said Gentry. "I've been working to define the basic mechanisms of LD for nearly 15 years and it's truly amazing to see this science translated into a potential therapeutic."

Epilepsy is a heterogeneous condition with multiple genetic, environmental, and sporadic causes that affects 50 million people worldwide. One-third of these patients have drug-resistant seizures, demonstrating an urgent need for personalized therapeutic strategies.

Dr. Kathryn Brewer, also of the UK College of Medicine and co-investigator on the study, noted that the study results have potential treatment applications beyond this ultra-rare disease.

"Lafora Disease belongs to a family of human diseases called glycogen storage disease," she said. "GSDs are caused by mutations in genes that result in glycogen mis-regulation and cause pathogenic consequences in various tissues, and the Valerion technology is a promising drug platform to treat a range of GSDs."

The study was published in the July 25th edition of Cell Metabolism.
-end-


University of Kentucky

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...