Nav: Home

Preclinical study of therapeutic strategy for Lafora disease shows promise

July 25, 2019

LEXINGTON, Ky (July 25, 2019) -- A team of scientists have designed and tested in mice a novel and promising therapeutic strategy for treating Lafora Disease (LD), a fatal form of childhood epilepsy. This new type of drug - called an antibody-enzyme fusion or AEF -- is a first-in-class therapy for LD and an example of precision medicine that has potential for treating other types of aggregate-based neurological diseases.

LD is an inherited epilepsy and neurodegenerative disorder caused by intracellular carbohydrate aggregates in the brain. LD patients develop normally until the teen years when seizures begin. Epileptic episodes become increasingly severe and more frequent, followed by rapid cognitive decline and a vegetative state. LD patients typically die within 10 years of diagnosis.

"LD is devastating for patients and their families, and currently there are no effective treatments," said Dr. Matthew Gentry of the University of Kentucky College of Medicine and a lead scientist on the study. "We've been working to define exactly what causes the disease and to develop effective therapies."

It is now understood that LD is caused by toxic carbohydrate aggregates called Lafora bodies. Structurally, the aggregates resemble plant starch, the major source of carbohydrates in the human diet.

"Amylase is an enzyme that our bodies naturally secrete in saliva and in the gut to break down the starch in our food," Gentry said. "A study from the 1970s suggested that amylase could also degrade Lafora bodies. However, we needed a way to get the amylase into brain cells, where the Lafora bodies are found."

The Gentry laboratory collaborated with Valerion Therapeutics, a clinical-stage biotechnology company with a novel antibody-based delivery platform capable of carrying active biotherapeutics into cells.

"We fused human amylase to our proprietary antibody fragment for intracellular delivery of enzyme into cells of mice genetically engineered to develop LD," said Dr. Dustin Armstrong, Valerion's Chief Scientific Officer.

This antibody-amylase fusion, called VAL-0417, virtually eliminated the Lafora bodies in LD mouse brains and other tissues.

"A seven-day continuous infusion of VAL-0417 directly into the brain restored normal brain metabolism in the LD mice, suggesting VAL-0417 could reverse the disease in humans," said Gentry. "I've been working to define the basic mechanisms of LD for nearly 15 years and it's truly amazing to see this science translated into a potential therapeutic."

Epilepsy is a heterogeneous condition with multiple genetic, environmental, and sporadic causes that affects 50 million people worldwide. One-third of these patients have drug-resistant seizures, demonstrating an urgent need for personalized therapeutic strategies.

Dr. Kathryn Brewer, also of the UK College of Medicine and co-investigator on the study, noted that the study results have potential treatment applications beyond this ultra-rare disease.

"Lafora Disease belongs to a family of human diseases called glycogen storage disease," she said. "GSDs are caused by mutations in genes that result in glycogen mis-regulation and cause pathogenic consequences in various tissues, and the Valerion technology is a promising drug platform to treat a range of GSDs."

The study was published in the July 25th edition of Cell Metabolism.
-end-


University of Kentucky

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab