Nav: Home

Human artificial chromosomes bypass centromere roadblocks

July 25, 2019

Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere. In the journal Cell on July 25th, researchers announce that they have made progress on this key component.

"The centromere used to be called the black box of the chromosome," says Ben Black, professor of biochemistry and biophysics at the University of Pennsylvania. "If you're studying any kind of biological process, you want to be able to build it, and that's where we've made progress here."

In mammals, centromeres--the central point of the X-shaped chromosome--ensure that a chromosome is inherited when a cell divides, acting as an anchor for the spindle fibers that pull the duplicated chromosome in half. The genetic sequence of a natural human centromere is thousands of repetitions of a 171-base-pair sequence. Centromeric DNA must also be modified epigenetically in the cell to function properly. These epigenetic marks (protein and chemical tags along the DNA) are thought to be established at centromeres by the human CENP proteins.

First-generation HACs have relied on both the repetitive centromere sequence and CENP-B. But the repetitive sequence make centromeres tricky to clone for study in the lab. Therefore, "all of the synthetic chromosomes that have been recently reported use approaches that intentionally remove repetitive elements," Black says, making it so far impossible to transition the techniques that work in yeast artificial chromosomes to HACs.

Black's team has now created two new HACs: neither use CENP-B, and one is not repetitive. "We wanted to see if we can break the rules by bestowing the DNA we put into the cell with epigenetic markers from the get go," says Black. Their improvements remove the requirement for CENP-B, make the HACs more reliably inherited in cell culture, and provided the opportunity for the researchers to study them with genomic approaches, which had previously been impossible.

CENP-B, though not essential for natural chromosomes, has been assumed to be required for artificial centromere formation until now. A closely related protein, CENP-A, is actually the essential epigenetic marker for centromeres, and Black and his team have been able to direct the assembly of CENP-A onto the incoming HAC DNA.

The next-generation HACs made by Black and his team will allow for more thorough study of the essential components of functional chromosomes. Because a version of their HAC does not have the long repeating section, Black's team was able to use genomic approaches to analyze the sequence where centromeres formed. More reliable HACs will also open the door to complex synthetic biological systems that require longer sequences than can fit in viruses, the current common mode of delivering synthetic genetic systems.
-end-
This work was supported by the National Institutes of Health, the UPenn Cell and Molecular Biology Training Grant, the European Research Council, and the Wellcome Trust Senior Researcher Fellowship. The authors declare no conflict of interest.

Cell, Logsdon et al.: "Human Artificial Chromosomes that Bypass Centromeric DNA" https://www.cell.com/cell/fulltext/S0092-8674(19)30634-8

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.