Nav: Home

How the pufferfish got its wacky spines

July 25, 2019

Pufferfish are known for their strange and extreme skin ornaments, but how they came to possess the spiky skin structures known as spines has largely remained a mystery. Now, researchers have identified the genes responsible for the evolution and development of pufferfish spines in a study publishing July 25 in the journal iScience. Turns out, the process is pretty similar to how other vertebrates get their hair or feathers--and might have allowed the pufferfish to fill unique ecological niches.

"Pufferfish are some of the strangest fish in the ocean, particularly because they have a reduced skeleton, beak-like dentition and they form spines instead of scales--not everywhere, but just in certain patches around the body," says corresponding author Gareth Fraser (@garethjfraser), an Assistant Professor at the University of Florida.

Fraser and his team followed the development of pufferfish spines in embryos. While they had initially hypothesized that the spines formed from scales--that the pufferfish lost its scale component but retained the spine--they found that the spines are developmentally unique from scales. They also found that the development of pufferfish spines relies on the same network of genes that are commonly expressed within feathers and hairs of other vertebrate animals.

"It just blows me away that regardless of how evolutionarily-different skin structures in animals are, they still use the same collection of genes during development," Fraser says.

The researchers then decided to look at what would happen if they manipulated those genes. Using CRISPR-Cas9 and other genetic techniques, the researchers blocked particular genes that are classic markers of skin appendage development. Doing so allowed them to reduce the number of spines on pufferfish, as well as loosen the restriction on where the spines appear on the pufferfish.

Normally, the spines are localized to specific areas on the pufferfish. Fraser says that this localization of the spines is to enhance protection.

"When pufferfish inflate by ingesting water or in some cases air, their skin becomes stretched, especially around the abdomen and is more susceptible to damage, such as being torn," he says. "Spines reinforce the puffed-up abdomen. In extreme cases, some pufferfish have lost all other spines on their body and retain only the abdominal spines."

The reason for the diversity in spine coverage is likely ecological, Fraser says.

"What really drives these changes, in terms of loss or gain of spines, is multifactorial, but the shifts in spine coverage and morphology may allow pufferfish to take advantage of new ecological niches that are available to them," he says. "As the climate changes and environments become different, pufferfish may use these evolving traits to tolerate and adapt to change."

Through their sequencing efforts, Fraser and his colleagues hope to ultimately identify the differences in the genome that allow for the diversity in spine coverage, morphology and the transition from scales to spines.

"We can manipulate different things associated with pufferfish diversity, which gives us clues about the function of genes that are necessary for normal development and helps us understand the evolution and patterns of pufferfish spines," Fraser says. "Pufferfish are wildly-derived fish that are incredibly different from other groups, and ultimately, we want to see if there's something specific to the genome of the pufferfish that can provide clues to suggest mechanisms that allow them to create these weird structures."
-end-
This work was supported by grants from the Leverhulme Trust Research Project, the Natural Environment Research Council, the Royal Society, the Great Britain Sasakawa Foundation, the Daiwa Anglo-Japanese Foundation, and the Jikei University Graduate Research Fund.

iScience, Fraser et al.: "Evolution and developmental diversity of skin spines in pufferfishes" https://www.cell.com/iscience/fulltext/S2589-0042(19)30185-3

iScience (@iScience_CP) is an open-access journal from Cell Press that provides a platform for original research and interdisciplinary thinking in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. Visit: http://www.cell.com/iscience. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.