Nav: Home

Underwater glacial melting occurring much faster than predicted

July 25, 2019

Underwater melting of tidewater glaciers is occurring much faster than previously thought, according to a new study by researchers at Rutgers and the University of Oregon.

The findings, which could lead to improved forecasting of climate-driven sea level rise, are based on a new method developed by the researchers that for the first time directly measures the submarine melting of tidewater glaciers.

The study appears in the July 26 issue of the journal Science.

"Tidewater glaciers around the globe -- in Greenland, Alaska, Antarctica and beyond -- are retreating and raising sea levels globally," said study co-author Rebecca Jackson, an oceanographer at Rutgers University-New Brunswick. "Submarine melting has been implicated as a trigger for this glacier retreat, but we have had no direct measurements of melting, let alone how it might vary in time. In our study, we show that the prevailing theory for melt significantly underestimates melt rates. These results suggest a stronger coupling between the ocean and glacier than previously expected, and our work provides a path forward to improving our understanding of how the ocean impacts glaciers."

In the National Science Foundation-funded project, the scientists studied the underwater melting of the LeConte Glacier, a tidewater glacier in Alaska, from 2016-2018. Most research on the underwater melting of glaciers around the world has relied on theoretical modeling, measuring conditions near the glaciers and then applying theory to predict melt rates, but this theory had never been directly tested, said lead author Dave Sutherland, a professor in the UO's Department of Earth Sciences.

The team of oceanographers and glaciologists used sonar to scan the glacier's underwater face; downstream measurements of currents, temperature and salinity to estimate the meltwater flow; radar to measure the glacier's speed above water; time-lapse photography to detect iceberg calving; and weather station data to measure the surface melt from the glacier. They then looked for changes in melt patterns between the August and May measurements.

"We found that melt rates are significantly higher than expected across the whole underwater face of the glacier -- in some places 100 times higher than theory would predict," Jackson said. "We also find, as expected but never shown, that melt rates are higher in summer than in spring, and that variations in melt rates across the terminus cause overcutting and undercutting."

While the study focused on one tidewater glacier, the new approach should be useful to researchers who study melting at other tidewater glaciers around the world, which would help to improve projections of global sea level rise.

"The fact that we show the existing theory it is wildly inaccurate at one glacier - the only glacier where we can make a robust comparison between theory and observations - should lead us to be very skeptical of its current use in studying any tidewater glacier," Jackson added. "Our results also align with several recent studies of other glaciers that have indirectly suggested that theory under-predicts melting. Our observations prove this in a robust way and contribute to a growing body of research that suggests that we need to revisit our basic assumptions about what controls underwater melting at glaciers around the world."

Sutherland said: "Future sea level rise is primarily determined by how much ice is stored in these ice sheets. We are focusing on the ocean-ice interfaces because that's where the extra melt and ice is coming from that controls how fast ice is lost. To improve the modeling, we have to know more about where melting occurs and the feedbacks involved."
-end-
Broadcast interviews: Rutgers University has broadcast-quality TV and radio studios available for remote live or taped interviews with Rutgers experts. For more information, contact Neal Buccino at neal.buccino@echo.rutgers.edu

ABOUT RUTGERS--NEW BRUNSWICK

Rutgers University-New Brunswick is where Rutgers, the State University of New Jersey, began more than 250 years ago. Ranked among the world's top 60 universities, Rutgers's flagship is a leading public research institution and a member of the prestigious Association of American Universities. It has an internationally acclaimed faculty, 12 degree-granting schools and the Big Ten Conference's most diverse student body.

Rutgers University

Related Glaciers Articles:

Saying goodbye to glaciers
Glaciers around the world are disappearing before our eyes, and the implications for people are wide-ranging and troubling, Twila Moon, a glacier expert at the University of Colorado Boulder, concludes in a Perspectives piece in the journal Science today.
Glaciers rapidly shrinking and disappearing: 50 years of glacier change in Montana
The warming climate has dramatically reduced the size of 39 glaciers in Montana since 1966, some by as much as 85 percent, according to data released by the U.S.
Polar glaciers may be home to previously undiscovered carbon cycle
Microbes in streams flowing on the surface of glaciers in the Arctic and Antarctic may represent a previously underestimated source of organic material and be part of an as yet undiscovered 'dynamic local carbon cycle,' according to a new paper published by researchers supported by the National Science Foundation.
Study shows planet's atmospheric oxygen rose through glaciers
A 'Snowball Earth' event actually took place 100 million years earlier than previously projected.
Researchers find seafloor valleys below West Antarctic glaciers
Glaciologists have uncovered large valleys in the ocean floor beneath some of the massive glaciers flowing into the Amundsen Sea in West Antarctica.
Mountain glaciers are showing some of the strongest responses to climate change
Tying an individual glacier's retreat to climate change has been controversial.
Most meltwater in Greenland fjords likely comes from icebergs, not glaciers
Icebergs contribute more meltwater to Greenland's fjords than previously thought, losing up to half of their volume as they move through the narrow inlets, according to new research.
Receding glaciers in Bolivia leave communities at risk
A new study published in The Cryosphere, an European Geosciences Union journal, has found that Bolivian glaciers shrunk by 43 percent between 1986 and 2014, and will continue to diminish if temperatures in the region continue to increase.
Technique could assess historic changes to Antarctic sea ice and glaciers
Historic changes to Antarctic sea ice could be unravelled using a new technique pioneered by scientists at Plymouth University.
Cosmopolitan snow algae accelerate the melting of Arctic glaciers
The role of red pigmented snow algae in melting Arctic glaciers has been strongly underestimated, suggests a study to be published in Nature Communications on June 22.

Related Glaciers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...