Nav: Home

Shark hotspots under worldwide threat from overfishing

July 25, 2019

In a groundbreaking new study published in the journal Nature, an international team of over 150 scientists from 26 countries combined movement data from nearly 2,000 sharks tracked with satellite tags. Using this tracking information, researchers identified areas of the ocean that were important for multiple species, shark "hot spots", that were located in ocean frontal zones, boundaries in the sea between different water masses that are highly productive and food-rich. Researchers then calculated how much shark hotspots overlapped with global longline fishing vessels - the type of fishing gear that catches most open-ocean sharks. The study found that 24% of the space used by sharks in an average month falls under the footprint of longline fishing. For commercially exploited sharks such as blue and shortfin makos sharks in the North Atlantic, the overlap was much higher, with on average 76% and 62% of their space use, respectively, overlapping with longlines each month. Even internationally protected species, such as great whites, had over 50% overlap with longline fleets. 

"Our results show major high seas fishing activities are currently centered on ecologically important shark hotspots worldwide" says Professor David Sims, who led the study as part of the Global Shark Movement Project based at the Marine Biological Association Laboratory in Plymouth, UK.

Equally alarming was that shark hotspots showing high overlap with longline fishing were often also subjected to high fishing effort, a potential 'double whammy' for sharks that will result in higher catch rates and potentially accelerate declines in abundance.  

"Some shark hotspots were exposed to higher than average fishing effort for as much as half the year" said Nuno Queiroz, a lead researcher in the study from the University of Porto in Portugal.

The team's findings indicate large sharks - some of which are already endangered globally - face a future with limited spatial refuge from industrial longline fishing effort.

"Currently, little to no protection exists for sharks in the high seas. It's clear from our study that immediate conservation action is needed to prevent further declines of open-ocean sharks," said Neil Hammerschlag, a study co-author and research associate professor at the University of Miami Rosenstiel School of Marine and Atmospheric Science. "These finding are concerning because as top predators, sharks help maintain healthy ocean ecosystems," said Hammerschlag. 

Hammerschlag provided data from 154 tagged sharks of 10 species which included blacktip, blue, bull, Mako, scalloped hammerhead, sandbar, silky and tiger.

The researchers propose that designated large-scale marine protected areas around regions of shark activity could be one solution. The study suggests that the detailed maps of shark hotspots overlapping with longline fishing provide a 'blueprint' for deciding where to place large-scale marine protected areas (MPAs) aimed at conserving sharks, in addition to the need for strict quotas to reduce catches elsewhere. 

"Some of the shark hotspots we studied may not be there in as little as a few years' time if management measures are not put in place now to conserve the sharks and the habitats on which they depend" Sims says.

The research was published online in Nature on 24th July 2019, Global spatial risk assessment of sharks under the footprint of fisheries.  doi: 10.1038/s41586-019-1444-4
-end-
The full citation to the paper is: Queiroz, N., Humphries, N.E., Couto, A., Vedor, M., da Costa, I., Sequeira, A.M.M., Mucientes, G., Santos, A.M., Abascal, F.J., Abercrombie, D.L., Abrantes, K., Acuña-Marrero, D., Afonso, A.S., Afonso, P., Anders, D., Araujo, G., Arauz, R., Bach, P., Barnett, A., Bernal, D., Berumen, M.L., Bessudo Lion, S.,  Bezerra, N.P.A., Blaison, A.V., Block, B.A., Bond, M.E., Bradford, R.W., Braun, C.D., Brooks, E.J., Brooks, A., Brown, J., Bruce, B.D., Byrne, M.E., Campana, S.E., Carlisle, A.B., Chapman, D.D., Chapple, T.K., Chisholm, J., Clarke, C.R., Clua, E.G., Cochran, J.E.M., Crochelet, E.C., Dagorn, L., Daly, R., Devia Cortés, D., Doyle, T.K., Drew, M., Duffy, C.A.J., Erikson, T., Espinoza, E., Ferreira, L.C., Ferretti, F., Filmalter, J.D., Fischer, C.G., Fitzpatrick, R., Fontes, J., Forget, F., Fowler, M., Francis, M.P., Gallagher, A.J., Gennari, E., Goldsworthy, S.D., Gollock, M.J., Green, J.R., Gustafson, J.A., Guttridge, T.L., Guzman, H.M., Hammerschlag, N., Harman, L., Hazin, F.H.V., Heard, M., Hearn, A.R., Holdsworth, J.C., Holmes, B.J., Howey, L.A., Hoyos, M., Hueter, R.E., Hussey, N.E., Huveneers, C., Irion, D.T., Jacoby, D.M.P., Jewell, O.J.D., Johnson, R., Jordan, L.K.B., Jorgensen, S.J., Joyce, W., Keating Daly, C.A., Ketchum, J.T., Klimley, A.P., Kock, A.A., Koen, P., Ladino, F., Lana, F.O., Lea, J.S.E., Llewellyn, F.,  Lyon, W.S., MacDonnell, A., Macena, B.C.L., Marshall, H., McAllister, J.D., McAuley, R., Meÿer, M.A., Morris, J.J., Nelson, E.R., Papastamatiou, Y.P., Patterson, T.A., Peñaherrera-Palma, C., Pepperell, J.G., Pierce, S.J., Poisson, F., Quintero, L.M., Richardson, A., Rogers, P.J., Rohner, C.A., Rowat, D.R.L., Samoilys, M., Semmens, J.M., Sheaves, M., Shillinger, G., Shivji, M., Singh, S., Skomal, G.B., Smale, M.J., Snyders, L.B., Soler, G., Soria, M., Stehfest, K.M., Stevens, J.D., Thorrold, S.R., Tolotti, M.T.,  Towner, A., Travassos, P, Tyminski, J.P., Vandeperre, F., Vaudo, J.J., Watanabe, Y.Y., Weber, S.B., Wetherbee, B.M., White, T.D., Williams, S., Zárate, P.M., Harcourt, R., Hays, G.C., Meekan, M.G., Thums, M., Irigoien, X., Eguiluz, V.M., Duarte, C.M., Sousa, L.L., Simpson, S.J., Southall, E.J. & Sims, D.W. (2019) Global spatial risk assessment of sharks under the footprint of fisheries. Nature, doi: 10.1038/s41586-019-1444-4

The analysis was funded in part by the UK Natural Environment Research Council (NERC) and Fundação para a Ciência e a Tecnologia (FCT). Field research was supported by many funders listed at the end of the research paper's Supplementary Information.

University of Miami Rosenstiel School of Marine & Atmospheric Science

Related Sharks Articles:

Caribbean sharks in need of large marine protected areas
Governments must provide larger spatial protections in the Greater Caribbean for threatened, highly migratory species such as sharks, is the call from a diverse group of marine scientists including Stony Brook University School of Marine and Atmospheric Sciences (SoMAS) PhD Candidate, Oliver Shipley.
Recreational fishers catching more sharks and rays
Recreational fishers are increasingly targeting sharks and rays, a situation that is causing concern among researchers.
Large marine parks can save sharks from overfishing threat
'No-take' marine reserves -- where fishing is banned -- can reverse the decline in the world's coral reef shark populations caused by overfishing, according to an Australian study.
Walking sharks discovered in the tropics
Four new species of tropical sharks that use their fins to walk are causing a stir in waters off northern Australia and New Guinea.
Lonesome no more: White sharks hang with buddies
White sharks form communities, researchers have revealed. Although normally solitary predators, white sharks (Carcharodon carcharias) gather in large numbers at certain times of year in order to feast on baby seals.
The private lives of sharks
White sharks are top predators in the marine environment, but unlike their terrestrial counterparts, very little is known about their predatory activity underwater, with current knowledge limited to surface predation events.
Basking sharks exhibit different diving behavior depending on the season
Tracking the world's second-largest shark species has revealed that it moves to different depths depending on the time of year.
These sharks use unique molecules to glow green
In the depths of the sea, certain shark species transform the ocean's blue light into a bright green color that only other sharks can see -- but how they biofluoresce has previously been unclear.
Blue sharks use eddies for fast track to food
Blue sharks use large, swirling ocean currents, known as eddies, to fast-track their way down to feed in the ocean twilight zone.
Hundreds of sharks and rays tangled in plastic
Hundreds of sharks and rays have become tangled in plastic waste in the world's oceans, new research shows.
More Sharks News and Sharks Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.