A new way to measure the expansion of the universe

July 26, 2011

A PhD student from The International Centre for Radio Astronomy Research (ICRAR) in Perth has produced one of the most accurate measurements ever made of how fast the Universe is expanding.

Florian Beutler, a PhD candidate with ICRAR at the University of Western Australia, has calculated how fast the Universe is growing by measuring the Hubble constant.

"The Hubble constant is a key number in astronomy because it's used to calculate the size and age of the Universe," said Mr Beutler.

As the Universe swells, it carries other galaxies away from ours. The Hubble constant links how fast galaxies are moving with how far they are from us.

By analysing light coming from a distant galaxy, the speed and direction of that galaxy can be easily measured. Determining the galaxy's distance from Earth is much more difficult. Until now, this has been done by observing the brightness of individual objects within the galaxy and using what we know about the object to calculate how far away the galaxy must be.

This approach to measuring a galaxy's distance from Earth is based on some well-established assumptions but is prone to systematic errors, leading Mr Beutler to tackle the problem using a completely different method.

Published today in the Monthly Notices of the Royal Astronomical Society, Mr Beutler's work draws on data from a survey of more than 125,000 galaxies carried out with the UK Schmidt Telescope in eastern Australia. Called the 6dF Galaxy Survey, this is the biggest survey to date of relatively nearby galaxies, covering almost half the sky.

Galaxies are not spread evenly through space, but are clustered. Using a measurement of the clustering of the galaxies surveyed, plus other information derived from observations of the early Universe, Mr Beutler has measured the Hubble constant with an uncertainly of less than 5%.*

"This way of determining the Hubble constant is as direct and precise as other methods, and provides an independent verification of them," says Professor Matthew Colless, Director of the Australian Astronomical Observatory and one of Mr Beutler's co-authors. "The new measurement agrees well with previous ones, and provides a strong check on previous work."

The measurement can be refined even further by using data from larger galaxy surveys.

"Big surveys, like the one used for this work, generate numerous scientific outcomes for astronomers internationally," says Professor Lister Staveley-Smith, ICRAR's Deputy Director of Science.
* The new measurement of the Hubble constant is 67.0 ± 3.2 km s-1 Mpc-1

Publication: Florian Beutler et al. "The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant." Published in the Monthly Notices of the Royal Astronomical Society Journal, 25 July 2011.
(or for download from: http://arxiv.org/PS_cache/arxiv/pdf/1106/1106.3366v1.pdf PDF, 0.5MB)

More information:
Florian Beutler, ICRAR - UWA
Ph: +61 8 6488 7753 M: +61 420 996 916 E: florian.beutler@icrar.org

Professor Matthew Colless, Director, AAO
Ph: +61 2 9372 4812 M: +61 431 898 345 E: colless@aao.gov.au

Professor Lister Staveley-Smith, Deputy Director of Science, ICRAR
Ph: +61 8 6488 4550 Mob: +61 425 212 592 E: lister.staveley-smith@icrar.org

Media contacts:
Kirsten Gottschalk, ICRAR
Ph: +61 8 6488 7771 M: +61 438 361 876 E: Kirsten.gottschalk@icrar.org
Helen Sim
Ph: +61 2 9372 7771 M: +61 419 635 905 E: hsim@aao.gov.au

Animations & imagery: http://www.icrar.org/universe_expansion_resources

International Centre for Radio Astronomy Research

Related Astronomy Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

New technology is a 'science multiplier' for astronomy
A new study has tracked the long-term impact of early seed funding obtained from the National Science Foundation on many key advances in astronomy over the past three decades.

Powerful new AI technique detects and classifies galaxies in astronomy image data
Researchers at UC Santa Cruz have developed a powerful new computer program called Morpheus that can analyze astronomical image data pixel by pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Astronomy student discovers 17 new planets, including Earth-sized world
University of British Columbia astronomy student Michelle Kunimoto has discovered 17 new planets, including a potentially habitable, Earth-sized world, by combing through data gathered by NASA's Kepler mission.

Task force recommends changes to increase African-American physics and astronomy students
Due to long-term and systemic issues leading to the consistent exclusion of African-Americans in physics and astronomy, a task force is recommending sweeping changes and calling for awareness into the number and experiences of African-American students studying the fields.

How to observe a 'black hole symphony' using gravitational wave astronomy
New research led by Vanderbilt astrophysicist Karan Jani presents a compelling roadmap for capturing intermediate-mass black hole activity.

Graphene sets the stage for the next generation of THz astronomy detectors
Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes.

3D holograms bringing astronomy to life
Scientists unravelling the mysteries of star cluster formation have taken inspiration from a 19th century magic trick, to help explain their work to the public.

The vibrating universe: Making astronomy accessible to the deaf
Astronomers at the University of California, Riverside, have teamed with teachers at the California School for the Deaf, Riverside, or CSDR, to design an astronomy workshop for students with hearing loss that can be easily used in classrooms, museums, fairs, and other public events.

Prehistoric cave art reveals ancient use of complex astronomy
As far back as 40,000 years ago, humans kept track of time using relatively sophisticated knowledge of the stars

Read More: Astronomy News and Astronomy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.