Scientists identify hibernation-inducing signaling mechanism

July 26, 2011

Fairbanks, Alaska--Hibernation is an essential survival strategy for some animals and scientists have long thought it could also hold promise for human survival. But how hibernation works is largely unknown. Scientists at the University of Alaska Fairbanks have successfully induced hibernation at will, showing how the process is initiated. Their research is published in the July 26 issue of The Journal of Neuroscience.

A hibernating animal has a reduced heart rate and blood flow similar to a person in cardiac arrest, yet the hibernator doesn't suffer the brain damage that can occur in people. "Understanding the neuroprotective qualities of hibernating animals may lead to development of a drug or therapy to save people's lives after a stroke or heart attack," said Kelly Drew, senior author and UAF professor of chemistry and biochemistry in the Institute of Arctic Biology.

Hibernating animals survive by severely reducing their metabolism, a condition called torpor, in which oxygen consumption can fall to as low as one percent of resting metabolic rate and core body temperature to near or below freezing temperatures.

Arctic ground squirrels, like all animals and people, produce a molecule called adenosine that slows nerve cell activity. "When a squirrel begins to hibernate and when you feel drowsy it's because adenosine molecules have attached themselves to receptors in your brain," said Tulasi Jinka, lead author and IAB post-doctoral fellow in Drew's lab.

The receptors can be regulated by a simple cup of coffee. A caffeine molecule is similar enough in structure to adenosine that it binds to the receptors and effectively stops or reverses the onset of drowsiness. Jinka and Drew wanted to know what substances trip the squirrels' switch to start to hibernate.

"We devised an experiment in which non-hibernating arctic ground squirrels were given a substance that stimulated adenosine receptors in their brains. We expected the substance to induce hibernation," Drew said. "We also gave a substance similar to caffeine to arouse hibernating ground squirrels."

The non-hibernating squirrels were tested three times during one year. They were tested during the summer when they were not hibernating, again early in their hibernation season and a third time mid-way through the hibernation season. If animals were hibernating before the test Jinka woke them up to see if the substance would cause them to go back into hibernation. To ensure that his expectations did not influence the results he delivered a placebo in the same manner as the drug and did not know which solution contained the active substance when he conducted the experiments.

Torpor was induced in all six of the squirrels awoken during mid-hibernation season, but in only two of the six from the early hibernation season group and in none during the summer season. The caffeine-like substance reversed torpor in all of the hibernating squirrels.

"We show for the first time that activation of the adenosine receptors is sufficient to induce torpor in arctic ground squirrels during their hibernation season," Jinka said, who conducted this experiment while he was a graduate student.

What Jinka and Drew don't yet know is how season causes the receptors to become increasingly sensitive to adenosine as the time of hibernation progresses.

Jinka and Drew are expanding their adenosine research to rats, which more closely resemble the physiology of humans. "Rats allow us to move toward being able to apply this research to humans," Jinka said.
-end-
ADDITIONAL CONTACTS:
Tulasi Jinka, post-doctoral fellow, Institute of Arctic Biology, UAF, 907-474-1129, tjinka@alaska.edu.
Kelly Drew, professor of chemistry and biochemistry, Institute of Arctic Biology, UAF, 907-474-7190, kdrew@alaska.edu.

ON THE WEB: URL here

University of Alaska Fairbanks

Related Hibernation Articles from Brightsurf:

Generational shifts help migratory bats keep pace with global warming
An international team of scientists led by the Leibniz Institute for Zoo and Wildlife Research demonstrated that in the common noctule bat, one of the largest European bat species, the colonization of hibernacula progresses from lower to higher latitudes over successive generations of young animals - especially first-year males.

Evidence of hibernation-like state in Antarctic animal
Among the many winter survival strategies in the animal world, hibernation is one of the most common.

Fossil evidence of 'hibernation-like' state in 250-million-year-old Antarctic animal
University of Washington scientists report evidence of a hibernation-like state in Lystrosaurus, an animal that lived in Antarctica during the Early Triassic, some 250 million years ago.

Hibernation in mice: Are humans next?
University of Tsukuba and RIKEN researchers identified cells in the brain that can induce a hibernation-like state in mice or rats, species that do not naturally hibernate.

Neuroscientists discover neural circuits that control hibernation-like behaviors in mice
Harvard Medical School neuroscientists have discovered a population of neurons in the hypothalamus that controls hibernation-like behavior, or torpor, in mice, revealing for the first time the neural circuits that regulate this state.

First genetic evidence of resistance in some bats to white-nose syndrome, a devastating fungal disease
A new study from University of Michigan biologists presents the first genetic evidence of resistance in some bats to white-nose syndrome, a deadly fungal disease that has decimated some North American bat populations.

Learning from the bears
Grizzly bears spend many months in hibernation, but their muscles do not suffer from the lack of movement.

Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins

WSU grizzly research reveals remarkable genetic regulation during hibernation
New RNA sequencing-based genetic research conducted at Washington State University's Bear Research, Education, and Conservation Center shows grizzlies express a larger number of genes in preparation for, and during hibernation to cope with such stressors, than do any other species studied.

Beware of sleeping queens underfoot this spring
Scientists at Queen Mary University of London have discovered a never before reported behaviour of queen bumblebees.

Read More: Hibernation News and Hibernation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.