Nav: Home

Ion selectivity in neuronal signaling channels evolved twice in animals

July 26, 2012

Excitation of neurons depends on the selected influx of certain ions, namely sodium, calcium and potassium through specific channels. Obviously, these channels were crucial for the evolution of nervous systems in animals. How such channels could have evolved their selectivity has been a puzzle until now. Yehu Moran and Ulrich Technau from the University of Vienna together with Scientists from Tel Aviv University and the Woods Hole Oceanographic Institution (USA) have now revealed that voltage-gated sodium channels, which are responsible for neuronal signaling in the nerves of animals, evolved twice in higher and lower animals. These results were published in "Cell Reports".

The opening and closing of ion channels enable flow of ions that constitute the electrical signaling in all nervous systems. Every thought we have or every move we make is the result of the highly accurate opening and closing of numerous ion channels. Whereas the channels of most lower animals and their unicellular relatives cannot discern between sodium and calcium ions, those of higher animals are highly specific for sodium, a characteristic that is important for fast and accurate signaling in complex nervous system.

Surprising results in sea anemones and jellyfish

However, the researchers found that a group of basal animals with simple nerve nets including sea anemones and jellyfish also possess voltage-gated sodium channels, which differ from those found in higher animals, yet show the same selectivity for sodium. Since cnidarians separated from the rest of the animals more than 600 million years ago, these findings suggest that the channels of both cnidarians and higher animals originated independently twice, from ancient non-selective channels which also transmit calcium.

Since many other processes of internal cell signaling are highly dependent on calcium ions, the use of non-selective ion channels in neurons would accidently trigger various signaling systems inside the cells and will cause damage. The evolution of selectivity for sodium ions is therefore considered as an important step in the evolution of nervous systems with fast transmission. This study shows that different parts of the channel changed in a convergent manner during the evolution of cnidarians and higher animals in order to perform the same task, namely to select for sodium ions.

This demonstrates that important components for the functional nervous systems evolved twice in basal and higher animals, which suggests that more complex nervous systems that rely on such ion-selective channels could have also evolved twice independently.

-end-

Publication in "Cell Reports": Convergent evolution of sodium ion selectivity in metazoan neuronal signaling: Maya Gur Barzilai, Adam M. Reitzel, Johanna E.M. Kraus, Dalia Gordon, Ulrich Technau, Michael Gurevitz and Yehu Moran. CELL-REPORTS-D-12-00108R2

University of Vienna
New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.