Nav: Home

Middle atmosphere in sync with the ocean

July 26, 2016

Water plays a major role for our planet not only in its liquid form at the surface. In the atmosphere too, it considerably affects our lives as well as weather and climate. Clouds and rainfall are one example. Water vapor, the gaseous form of water, also plays a prominent role on Earth. It is the most important greenhouse gas in the atmosphere, without it the Earth would be a frozen planet. For climate variations, water vapor is particularly important in the stratosphere at altitudes between 15 and 50 kilometers. How much of the gas actually reaches the stratosphere mainly depends on the temperature at the transition between the lowest atmospheric layer, the troposphere, and the overlying stratosphere. This boundary layer is called the tropopause.

Now scientists of the GEOMAR Helmholtz Centre for Ocean Research Kiel, together with a colleague from Bergen (Norway), were able to demonstrate for the first time that natural fluctuations in water temperatures of the Pacific - which occur on decadal timescales - are directly related to the temperature of the tropical tropopause. "It has long been thought that human influences already affected the tropopause. However, it seems that natural variability is still the dominating factor," says Dr. Wuke Wang from GEOMAR, lead author of the study just published in the international journal Scientific Reports.

For their study, the researchers used observations for the period 1979-2013 and also climate models. "We were thus able to extend the study period to nearly 150 years. The model allows us to easily look at both human and natural influences and to separate their impacts from each other," explains Prof. Dr. Katja Matthes, climate researcher at GEOMAR and co-author of the study.

A well-known climatic phenomenon is the so-called Pacific Decadal Oscillation (PDO). "This natural variation with decadal timescale leads to anomalously high or low water temperatures of the Pacific," explained Dr. Wang. The PDO influences the climate and ecosystems in the Pacific region and also the global mean temperature of the Earth.

The model simulations show that the fluctuations in water temperatures also affect the wind systems over the tropical and subtropical Pacific. This in turn also alters the air transport between the lower and upper layers of the troposphere, ultimately regulating the temperatures at the boundary to the stratosphere. "We were now able to demonstrate these relationships for the first time," said Dr. Wang.

Thus, the current study contradicts earlier hypotheses about the temperature variability of the tropical tropopause. As early as in the late 20th century, scientists had seen a cooling trend there which began in the 1970s. They traced this observation back to anthropogenic causes, in particular the increase in greenhouse gases. "However, this assumption was based on a rather patchy data base and simplified climate models. Our study shows that the cooling of the tropical tropopause does not have to be a one-way street but could also be part of a natural fluctuation which extends over several decades," Professor Matthes emphasized.

This knowledge is also of paramount importance for the general climate research. The temperature of the tropopause decides on the input of water vapor into the stratosphere: The higher the water vapor content in the stratosphere, the higher the increase in surface temperatures. Anthropogenic climate change also has an effect on the temperature of the tropopause, and this effect could become more evident in the coming decades. "Only if we can clearly distinguish natural variability from anthropogenic influences, we can make reliable forecasts for the future development of our climate," Prof. Matthes summarizes.
-end-
Scientific paper: Wang, W., K. Matthes, N.-E. Omrani, and M. Latif, 2016: Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation. Scientific Reports, 6:29537, DOI: 10.1038/srep29537

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Climate Models Articles:

Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.
Airborne lidar system poised to improve accuracy of climate change models
Researchers have developed a laser-based system that can be used for airborne measurement of important atmospheric gases with unprecedented accuracy and resolution.
Pulses of sinking carbon reaching the deep sea are not captured in global climate models
A new study by MBARI scientists shows that pulses of sinking debris carry large amounts of carbon to the deep seafloor, but are poorly represented in global climate models.
Study brings new climate models of small star TRAPPIST 1's seven intriguing worlds
New research from a University of Washington-led team of astronomers gives updated climate models for the seven planets around the star TRAPPIST-1.
Current climate models underestimate warming by black carbon aerosol
Researchers in the School of Engineering & Applied Science have discovered a new, natural law that sheds light on the fundamental relationship between coated black carbon and light absorption.
More Climate Models News and Climate Models Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...