Nav: Home

Every grain of rice: Ancient rice DNA data provides new view of domestication history

July 26, 2016

Rice, or Oryza sativa as its scientifically known, feeds more than a third of the globe. Yet the majority of rice crops that supply 90 percent of the world come from just two domesticated varieties, japonica and indica.

Despite its importance on global palates and economies, the domestication and origins of rice have remained a mystery. The popular consensus is that japonica, the shorter stickier grain perfect for sushi, has been exclusively cultivated exclusively in northern part of East Asia. In northern parts of East Asia, consisting of Japan, Korea, and northern part of China, current rice production and consumption are japonica with very little exceptional use of indica.

Now, using new data collected samples of ancient, carbonized rice, a team of Japanese and Chinese scientists have successfully determined DNA sequences to make the first comparisons between modern and ancient rice. To do so, they used new techniques to carefully cull chloroplast DNA from ancient rice 900-2,800-years-old, which had been excavated from seven archaeological sites in Japan and Korea.

In the process, they've become among the first research groups to successfully glean DNA information from ancient cereal crop analysis--not an easy feat. Literally, from a single grain of rice, less than 10mg in weight, they were able to glean DNA from typically just a few out of the precious hundreds they were able to sample. These ancient rice samples were compared to a database collected from 216 modern cultivated and wild rice DNA samples from around the world.

They have new findings suggesting that indica rice was historically cultivated in East Asia or imported to East Asia, which go against generally held assumptions. Almost 2,000 years ago, ancient East Asians lived on a wide variety of rice cultivars including indica. The research team has now found, for the first time, the presence of both japonica- and indica-type varieties in the Yayoi period and the middle ages of Japan and the middle part of Korea Peninsula 2000 years ago. Together with the finding of rice variety in Korean Peninsula, the indica variety also contributed to the dietary of people living in archaic East Asia of more than two thousand years ago.

The authors suggest the possibility of cultivation of the indica variety as the ordinary rice variety in the west side of middle of Korean Peninsula more than 2,000 years ago. Another possibility is that indica rice was brought from China, because the area around Lelang in that era was governed by Chinese Han Empire.

"We have shown a decrease in number of the rice cultivar in East Asia from 2,000 years ago to the present," said the authors. "Reduction of genetic diversity by factitious bottleneck is one of the key aspects in domestication process. In addition, development of civilization and technologies has accelerated further reduction of genetic diversity in the modern era. Advanced agricultural technologies including water management, fertilizer and agrochemical enabled farmers cultivating rice fields under different environmental condition to produce varieties having higher value in market. Modernization has promoted sharing of the sense of values, causing homogenization of crop varieties produced."

The study successfully demonstrates the ability of ancient DNA studies to provide new insights into archaic rice diversity and domestication, which otherwise have not been made from DNA evidence solely from modern rice.
-end-


Molecular Biology and Evolution (Oxford University Press)

Related Genetic Diversity Articles:

Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity.
Study helps arboreta, botanical gardens meet genetic diversity conservation goals
In a groundbreaking study, an international team of 21 scientists evaluated five genera spanning the plant tree of life (Hibiscus, Magnolia, Pseudophoenix, Quercus and Zamia) to understand how much genetic diversity currently exists in collections in botanical gardens and arboreta worldwide.
Study reveals rich genetic diversity of Vietnam
In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.
Coastal pollution reduces genetic diversity of corals, reef resilience
A new study by researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology found that human-induced environmental stressors have a large effect on the genetic composition of coral reef populations in Hawai'i.
New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.
Texas A&M study reveals domestic horse breed has third-lowest genetic diversity
A new study by Dr. Gus Cothran, professor emeritus at the Texas A&M School of Veterinary Medicine & Biomedical Sciences, has found that the Cleveland Bay horse breed has the third-lowest genetic variation level of domestic horses, ranking above only the notoriously inbred Friesian and Clydesdale breeds.
Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.
Ancient Rome: a 12,000-year history of genetic flux, migrations and diversity
Scholars have been all over Rome for hundreds of years, but it still holds some secrets - for instance, relatively little is known about where the city's denizens actually came from.
Lupus study illustrates the importance of diversity in genetic research
Scientists at the HudsonAlpha Institute for Biotechnology have pinpointed epigenetic differences in the way lupus affects black women compared to other lupus patients, revealing important mechanics of the puzzling disease.
Are humans changing animal genetic diversity worldwide?
Human population density and land use is causing changes in animal genetic diversity, according to researchers at McGill University.
More Genetic Diversity News and Genetic Diversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.