Nav: Home

Severity of enzyme deficiency central to favism

July 26, 2016

Favism is a common hereditary disease, affecting around 400 million people worldwide. It is caused by a lack of the enzyme glucose-6-phosphate dehydrogenase (G6PD). This deficiency triggers the destruction of red blood cells (hemolysis) and anemia in patients after they consume fava beans and certain drugs. In the case of severe forms with a complete enzyme deficiency, life-threatening infections with bacteria and fungi can even occur. However, most specialists who treat these patients are unaware of this. Scientists from the Children's Research Center at the University Children's Hospital Zurich and the University of Zurich now reveal the mechanistic link between severe G6PD deficiency and immunodeficiency.

A functioning G6PD enzyme plays a key role in the so-called pentose phosphate pathway in cell metabolism. The co-factor nicotinamide adenine dinucleotide (NADPH) is formed in this process, which has two functions: On the one hand, it guarantees that sufficient glutathione is available in the red blood cells, which protects these cells as an antioxidant. In the event of a G6PD deficiency, the cells lose this protection against oxidative stress, which results in hemolysis. On the other hand, the co-factor NADPH allows the formation of reactive oxygen compounds in the immune system's phagocytes that they need to fend off bacterial and fungal infections.

Immunodeficiency similar to septic granulomatosis

The Zurich scientists teamed up with research colleagues from Germany to clarify the mechanism of the defective immune defense in G6PD patients: "In the event of a complete G6PD deficiency, i.e. without any demonstrable residual function of the enzyme, the phagocytes are unable to form any reactive oxygen compounds such as hydrogen peroxide due to the deficient provision of NADPH," explains Janine Reichenbach, a professor of pediatric immunology at the University of Zurich. As with a known immunodeficiency in phagocytes called chronic granulomatous disease (CGD), this causes a defective formation of DNA networks - so-called "neutrophil extracellular traps" (NETs), which are needed to capture and kill off bacteria and fungi. "Besides the more minor G6PD deficiency, which chiefly affects red blood cells, a severe or complete enzyme deficiency therefore also constitutes an immunodeficiency in the phagocytes," says Reichenbach, summarizing the results of the study.

Impact on therapy

This has consequences for the treatment of patients with a G6PD deficiency: "In order to determine the need for permanent antimicrobial prophylactic measures, the severity of the G6PD deficiency has to be determined first during the diagnosis. In the event of a severe enzyme deficiency, the formation of reactive oxygen compounds and DNA networks ought then to be analyzed," concludes Reichenbach.
-end-
Literature:

Ulrich Siler, Susana Romao, Emilio Tejera, Oleksandr Pastukhov, Elena Kuzmenko, Rocio G. Valencia, Virginia Meda Spaccamela, Bernd H. Belohradsky, Oliver Speer, Markus Schmugge, Elisabeth Kohne, Manfred Hoenig, Joachim Freihorst, Ansgar S. Schulz, Janine Reichenbach, Severe G6PD-deficiency leads to susceptibility to infection and absent NETosis, Allergy and Clinical Immunology, July 22, 2016. DOI: 10.1016/j.jaci.2016.04.041

Favism

The University Children's Hospital Zurich conducts an average of one to two favism analyses per day. One person with favism is usually identified every month.

Favism primarily affects the Mediterranean region, Africa, the Middle East and some Asian countries such as Thailand or India. Its prevalence in Switzerland is less than 0.5 percent (see S. Hofmann et al.; Swiss Medical Forum 2016). Due to migration and travel behavior, however, the number of favism cases in Switzerland could rise in future.

Contact:

Prof. Dr. med. Janine Reichenbach

Dr. Ulrich Siler

University Children's Hospital Zurich
Pediatric Immunology

Phone: +41 44 635 29 10

E-mail: janine.reichenbach@kispi.uzh.ch

Media Relations

University of Zurich

Phone: +41 44 634 44 67

E-mail: nathalie.huber@kommunikation.uzh.ch

University of Zurich

Related Red Blood Cells Articles:

Natural resistance to malaria linked to variation in human red blood cell receptors
Researchers have discovered that protection from the most severe form of malaria is linked with natural variation in human red blood cell genes.
Researchers use modified insulin and red blood cells to regulate blood sugar
Researchers have developed a new technique that uses modified insulin and red blood cells to create a glucose-responsive 'smart' insulin delivery system.
Resilient red blood cells need fuel to adapt their shape to the environment
An international research team led by Osaka University built a novel 'Catch-Load-Launch' microfluidic device to monitor the resilience of red blood cells after being held in a narrow channel for various periods of time.
Major breakthrough in the manufacture of red blood cells
Researchers have generated the first immortalized cell lines which allow more efficient manufacture of red blood cells.
Cargo-carrying red blood cells alleviate autoimmune diseases in mice
Using red blood cells modified to carry disease-specific antigens, a team of scientists from Whitehead Institute and Boston Children's Hospital have prevented and alleviated two autoimmune diseases -- multiple sclerosis (MS) and type 1 diabetes --i n early stage mouse models.
UNC-Chapel Hill researchers use light to launch drugs from red blood cells
Scientists at the University of North Carolina at Chapel Hill have developed a breakthrough technique that uses light to activate a drug stored in circulating red blood cells so that it is released exactly when and where it is needed.
Andeans with altitude sickness produce massive amounts of red blood cells
To better understand why some people adapt well to life at high altitude while others don't, researchers at University of California San Diego School of Medicine studied red blood cells derived from representatives of both groups living in the Andes Mountains.
Pretreating red blood cells with nitric oxide may reduce side effect linked to transfusions
A new treatment may diminish a dangerous side effect associated with transfusions of red blood cells (RBCs) known as pulmonary hypertension, an elevated blood pressure in the lungs and heart that can lead to heart failure, suggests a new study published in the November issue of Anesthesiology, the peer-reviewed medical journal of the American Society of Anesthesiologists (ASA).
Expert panel issues updated guidelines for red blood cell storage time and transfusion use
For most stable hospitalized patients, transfusions of red blood cells stored for any time point within their licensed dating period -- so-called standard issue -- are as safe as transfusions with blood stored 10 days or less, or 'fresh,' according to updated clinical guidelines issued by an expert panel convened by a national organization that has long set standards for blood banking and transfusion practices.
Updated AABB guidelines for when to perform red blood cell transfusion, optimal length of RBC storage
In a report published online by JAMA, Jeffrey L. Carson, M.D., of Rutgers Robert Wood Johnson Medical School, New Brunswick, N.J., and colleagues provide recommendations for the AABB (previously known as the American Association of Blood Banks) for the target hemoglobin level for red blood cell (RBC) transfusion among hospitalized adult patients who are hemodynamically stable and the length of time RBCs should be stored prior to transfusion.

Related Red Blood Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...