Study in mice suggests stem cells could ward off glaucoma

July 26, 2016

An infusion of stem cells could help restore proper drainage for fluid-clogged eyes at risk for glaucoma. That's the upshot of a study led by a Veterans Affairs and University of Iowa team.

Researchers led by Dr. Markus Kuehn injected stem cells into the eyes of mice with glaucoma. The influx of cells regenerated the tiny, delicate patch of tissue known as the trabecular meshwork, which serves as a drain for the eyes to avoid fluid buildup. When fluid accumulates in the eye, the increase in pressure could lead to glaucoma. The disease damages the optic nerve and can result in blindness.

"We believe that replacement of damaged or lost trabecular meshwork cells with healthy cells can lead to functional restoration following transplantation into glaucoma eyes," writes Kuehn on his lab's website.

His group reported their findings in the June 21, 2016, issue of the Proceedings of the National Academy of Sciences.

One potential advantage of the approach is that the type of stem cells used--called induced pluripotent stem cells--could be created from cells harvested from a patient's own skin. That gets around the ethical quandary of using fetal stem cells, and it also lessens the chance of the patient's body rejecting the transplanted cells.

Kuehn's team was able to get the stem cells to grow into cells like those of the trabecular meshwork by culturing them in a solution that had previously been "conditioned" by actual human trabecular meshwork cells.

The researchers were encouraged to see that the stem cell injection led to a proliferation of new endogenous cells within the trabecular meshwork. In other words, it appears the stem cells not only survived on their own, but coaxed the body into making more of its own cells within the eye, thus multiplying the therapeutic effect.

The team measured the effects in the mice nine weeks after the transplant. Lab mice generally live only two or three years, and nine weeks is roughly equal to about five or six years for humans.

Some 120,000 Americans are blind from glaucoma, according to the Gluacoma Research Foundation. African Americans are at especially high risk, as are people over age 60, those with diabetes, and those with a family history of the disease. The disease is not curable, but it can be managed so as to prevent the eventual loss of vision. Among the treatments currently used are eye drops and laser or traditional surgery.

The researchers say they are confident that their findings hold promise for the most common form of glaucoma, known as primary open angle glaucoma. They aren't sure yet if their mouse model is as relevant for other forms of the disease.

Another possible limitation of the research: It could be that new trabecular meshwork cells generated from the stem cell infusion eventually succumb to the same disease process that caused the breakdown in the first place. This would require retreatment. It's unclear, though, whether an approach requiring multiple treatments over time would be viable. The researchers plan to continue studying the approach.

Kuehn leads the Glaucoma Cell Biology Laboratory at the University of Iowa Carver College of Medicine, and is an investigator at the Center for the Prevention and Treatment of Visual Loss at the Iowa City VA Health Care System.
-end-


Veterans Affairs Research Communications

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.