Nav: Home

Unusual rare earth compound opens doorway to new class of functional materials

July 26, 2018

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered an earlier unknown discontinuous magnetoelastic transition in a rare-earth intermetallic. The mechanism of the material's changing magnetic state is so unusual, it provides new possibilities for discovery of similar materials.

Materials that possess magnetoelastic phase transitions are highly sought after for a number of developing technologies, including caloric heating and cooling systems. Materials that display this property are rare, and are thought to be exclusively transition metal-based.

But the Ames Laboratory research group found that a rare earth compound made of Europium and Indium, Eu2In, displayed a startlingly sharp magnetic phase transition accompanied with a giant magnetocaloric effect (change in temperature) and no hysteresis.

"This was a very surprising result and one of the least expected places to find such a phenomenon," said Yaroslav Mudryk, an Ames Laboratory scientist. "So this represents the first example of what potentially may become a new class of materials."

"The magnetic phase transition can be explained by an unusual exchange of electrons between the two elements in the compound, with Indium electronic states overlapping with those of Europium," said Durga Paudyal, an Ames Laboratory scientist.

"Now that we have seen this mechanism and are able to explain how it works, we can use this knowledge to look for similar but better materials, one that can be used in future applications like magnetic refrigeration," said Vitalij Pecharsky, Ames Laboratory scientist and Distinguished Professor of Materials Science and Engineering at Iowa State University.

The research is further discussed in the paper, "Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect," authored by F. Guillou, A.K. Pathak, D. Paudyal, Y. Mudryk, F. Wilhelm, A. Rogalev, and V.K. Pecharsky; and published in Nature Communications.

X-ray absorption and magnetic circular dichroism experiments were carried out at the ID12 beamline of the European Synchrotron Radiation Facility, ESRF, France.
-end-
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Ames Laboratory

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.