Nav: Home

Soundwave-surfing droplets leave no traces

July 26, 2018

DURHAM, N.C. -- Engineers at Duke University have developed a way to manipulate, split and mix droplets of biological fluids by having them surf on acoustic waves in oil. The technology could form the basis of a small-scale, programmable, rewritable biomedical chip that is completely reusable for disparate purposes from on-site diagnostics to laboratory-based research.

The study appears on July 26 in the journal Nature Communications.

Automated fluid handling has driven the development of many scientific fields. Robotic pipetting systems have, for example, revolutionized the preparation of sequencing libraries, clinical diagnostics and large-scale compound screening. While ubiquitous in the modern biomedical research and pharmaceutical industries, these systems are bulky, expensive and do not handle small volumes of liquids well.

Lab-on-a-chip systems have been able to fill this space to some extent, but most are hindered by one major drawback -- surface absorption. Because these devices rely on solid surfaces, the samples being transported inevitably leave traces of themselves that can lead to contamination.

"There are a lot of protein-laden fluids and certain reagents that tend to stick to the chips that are handling them," said Tony Jun Huang, the William Bevan Professor of Mechanical Engineering and Materials Science at Duke. "This is especially true of biological samples like undiluted blood, sputum and fecal samples. Our technology is well-suited for processing these difficult samples."

The new lab-on-a-chip platform uses a thin layer of inert, immiscible oil to stop droplets from leaving behind any trace of themselves. Just below the oil, a series of piezoelectric transducers vibrate when electricity is passed through them. Just like the surface of a subwoofer, these vibrations create sound waves in the thin layer of oil above them.

By carefully controlling the sound waves, the researchers create vertical vortexes that form small dimples in the oil to either side of the active transducer. These dimples can hold droplets with volumes ranging from one nanoliter to 100 microliters and pass them along the surface of the oil as the sound waves are modulated and different transducers are activated.

The droplets are effectively surfing on tiny soundwaves.

"Our contactless liquid-handling mechanism inherently eliminates cross-contamination associated with surface adsorption and the need for surface modification," Huang said. "It enables reusable paths for the droplets to be dynamically processed on arbitrary routes without cross-talk between each other, exponentially increasing the allowable number of combinations of reagent inputs on the same device."

Huang next wants to take this proof-of-concept demonstration and create a fully automated lab-on-a-chip platform that can handle complex operations with dozens of droplets simultaneously. He's planning to collaborate with peers at Duke for various applications in biology and medicine.
-end-
This research was supported by the National Institutes of Health (R01 GM112048, R33 EB019785) and the National Science Foundation CBET-1438126, IDBR-1455658.

"Digital Acoustofluidics: Programmable, Contactless Liquid Handling and Routing via Acoustic Streaming." Steven Zhang, James Lata, Chuyi Chen, John Mai, Feng Guo, Zhenhua Tian, Liqiang Ren, Zhangming Mao, Po-Hsun Huang, Peng Li, Shujie Yang, and Tony Jun Huang. Nature Communications, 2018. DOI: 10.1038/s41467-018-05297-z

Duke University

Related Technology Articles:

How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
New technology for powder metallurgy
Tecnalia leads EFFIPRO (Energy EFFIcient PROcess of Engineering Materials) project, which shows a new manufacturing process using powder metallurgy.
New milestone in printed photovoltaic technology
A team of researchers at Friedrich-Alexander-Universität have achieved an important milestone in the quest to develop efficient solar technology as an alternative to fossil fuels.
Gene Drive Technology: Where is the future?
For this episode of BioScience Talks, we're joined by Gene Drive Committee co-chair James P.
Could Hollywood technology help your health?
The same technology used by the entertainment industry to animate characters such as Gollum in 'The Lord of The Rings' films, will be used to help train elite athletes, for medical diagnosis and even to help improve prosthetic limb development, in a new research center at the University of Bath launched today.
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.
New technology for dynamic projection mapping
It has been thought technically difficult to achieve projection mapping onto a moving/rotating object so that images look as though they are fixed to the object.

Related Technology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".