Nav: Home

Neurobiology: Finding one's way home

July 26, 2018

In vertebrates, the inner ear develops from the otic placode, a group of cells found in a specific region on the surface of the growing embryo. Studies performed on various vertebrate species have demonstrated that when the placode is transplanted to other sites, it retains the capacity to develop into a normally organized inner ear. In collaboration with Dr. Karen Elliott of the University of Iowa, LMU's Professor Hans Straka and his doctoral student Clayton Gordy have investigated how the afferent nerves that sprout from the ectopic ear reach the brain, and demonstrated the functionality of the connections they make in the brainstem. The new findings appear in the journal Developmental Neurobiology.

The inner ear is not only essential for the sense of hearing, it also plays a crucial role in regulating balance and posture. Stimuli impinging on the inner ear are transmitted via nerve fibers that project to processing centers in the hindbrain. These fibers must therefore be capable of recognizing their target cells, and the appropriate navigational cues along the way. In order to investigate the pattern of functional connections made by nerve fibers that grew out of misplaced otic placodes, the authors worked with embryos of the clawed frog Xenopus laevis, an important model organism in developmental biology. They found that the ectopically located neurons grow along existing nerve tracts nearby. Thus when placodes were transplanted to the vicinity of the heart, the outgrowing nerve cells followed the course of the vagus nerve, which originates deep in the hindbrain and is responsible for controlling the heartbeat.

When the placode was placed at a level midway along the dorsolateral flank, it gave rise to a complete inner ear. "In this case, the closest part of the central nervous system is the spinal cord," says Straka. "The nerves first grow into the spinal cord and then the fibers ascend along it until they reach the hindbrain, ending in the region to which the fibers from the normal ears project. That means that the system knows into which region of the brain these nerve fibers need to grow." Moreover, nerve fibers from the ectopic ear form the correct functional connections in the brainstem, and transmit nerve impulses via the relay stations with which the normal fibers make contact. The authors of the study tested this by stimulating the balance organ in the transplanted ear, and showed that this elicited the expected reflex movement of the eyes required to stabilize the gaze.

In order to find their way to their destinations in the hindbrain, the ectopic neurons most probably rely on diffusible molecules, which are secreted by specific cells and form gradients that provide directional cues. Within the brain, other guidance mechanisms then come into play. These may be based on more specific molecular labels, or may depend on progressive, activity-dependent refinement of interactions to select the correct target. Straka and his colleagues would now like to learn more about the mechanisms that mediate the functional connections between sensory organs and the central nervous system. "A better understanding of these processes could play an important role in the design of more effective measures for the compensation of episodic loss of balance," he says.

Developmental Neurobiology 2018
-end-


Ludwig-Maximilians-Universität München

Related Spinal Cord Articles:

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.
Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.
Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.
An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.
Spinal cord is 'smarter' than previously thought
New research from Western University has shown that the spinal cord is able to process and control complex functions, like the positioning of your hand in external space.
The lamprey regenerates its spinal cord not just once -- but twice
Marine Biological Laboratory (MBL) scientists report that lampreys can regenerate the spinal cord and recover function after the spinal cord has been severed not just once, but twice in the same location.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
More Spinal Cord News and Spinal Cord Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.