Nav: Home

Changes to small RNA in sperm may help fertilization

July 26, 2018

WORCESTER--Two papers by UMass Medical School Professor Oliver J. Rando, MD, PhD, shed new light on the processes of fertilization and epigenetic inheritance in mammals. Together, the research provides important insight into how epigenetics - the study of inheritable traits that are carried outside the genome - work from father to offspring. The studies appear in the journal Developmental Cell and provide new information about the epigenetic contribution of males to their offspring.

Studies over the past decade in the field of epigenetics have provided unexpected support to the notion that conditions experienced by a parent can affect disease risk and other traits in future generations. Contributions of mammalian females to their offspring are apparent--both nuclear and mitochondrial DNA, for example, as well as exposure to various factors during gestation--but less is known about male contributions beyond the DNA found in sperm.

"The study of paternal contributions to development, including environmental contributions to the health of sperm, is a burgeoning field of research," said Dr. Rando, professor of biochemistry and molecular pharmacology at UMMS. "In addition, because of the rise in the use of assisted reproduction, it's also vital to look at the differences between sperm removed directly from the testicles and ejaculated sperm, to investigate whether these differences may have an impact on the long-term health of the offspring."

Both studies looked at small RNAs to determine how these molecules contribute to epigenetic changes in sperm in mice.

In the first study, led by Upasna Sharma, PhD, postdoctoral fellow at UMMS, the investigators looked at what happens to small RNAs when sperm leave the testes and travel through the epididymis toward the vas deferens, a process that takes about two weeks. Researchers found that the sperm underwent dramatic changes to its their RNA "payload" - small RNAs carrying information -during this time. They also confirmed that some of the RNA found in sperm originates in the paternal epididymis and is later transferred to sperm cells.

The second study looked at the functional implications of small RNAs in sperm and whether these small RNAs have any effect on sperm or the fertilized egg. The team, led by UMMS Postdoctoral Associate Colin C. Conine, PhD, found that small RNAs in sperm are essential for normal pre-implantation development. Specifically, they showed that embryos fertilized using sperm from early in the epididymis -- where sperm have not yet gained a full payload of regulatory RNAs -- exhibit gene misregulation early in development and then fail to implant in the uterus efficiently. The researchers could correct these defects by injecting small RNAs from the end of the epidydimal pathway into the newly formed embryo.

Earlier studies from Rando and others suggested that paternal environmental conditions can affect the health of their offspring and that a man's lifestyle and exposure to potentially hazardous elements--such as stress and toxins--can affect the levels and types of small RNA in the sperm. The researchers plan to continue studying the role of small RNAs in reproduction and development.

"A substantial subset of embryos are created using fertilization with testicular sperm, which have subtly different RNA contents from ejaculated sperm," said Rando. "Since we now show that even relatively subtle RNA differences between sperm from the beginning versus the end of the epididymis can impact offspring it will be interesting to explore these effects of sperm used in assisted reproduction."
-end-


University of Massachusetts Medical School

Related Rna Articles:

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.
Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.
A new approach to reveal the multiple structures of RNA
The key of the extraordinary functionality of ribonucleic acid, better known as RNA, is a highly flexible and dynamic structure.
RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.
New RNA molecules may play a role in aging
Using a new sequencing method, this class of previously invisible RNA molecules were found to be abundantly expressed.
AI reveals nature of RNA-protein interactions
A deep learning tool could help in structure-based drug discovery.
Uncovering the principles behind RNA folding
Using high-throughput next-generation sequencing technology, Professor Julius Lucks found similarities in the folding tendencies among a family of RNA molecules called riboswitches, which play a pivotal role in gene expression.
A new, unified pathway for prebiotic RNA synthesis
Adding to support for the RNA world hypothesis, Sidney Becker and colleagues have presented what's not been shown before -- a single chemical pathway that could generate both the purine and pyrimidine nucleosides, the key building blocks of RNA.
More RNA News and RNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.