Nav: Home

To keep more carbon on the ground, halting farmland expansion is key

July 26, 2018

The conversion of forests to farmland is recognized as a major contributor to rising levels of greenhouse gases. And yet it hasn't been clear how to best minimize the loss of sequestered carbon into the atmosphere. Is it better to maximize farm yields so as to use less land area over all? Or should farms be operated so as to retain more carbon on site, even at the expense of crop yields? Researchers reporting in Current Biology on July 26 say that, based on their extensive studies of agricultural operations in the humid tropics of Ghana, the dry tropical forest in Mexico, and temperate wetlands and forests in Poland, the best course in all cases is to limit the conversion of natural habitat to farmland, a strategy known as land sparing. That means maximizing yields on existing agricultural lands.

"At one extreme, farmers can try to produce all their food from as small an area of farmland as possible, by having very high yields," says David Williams from the University of California, Santa Barbara. "This will probably reduce the amount of carbon stored on their farmland, but allows policy makers and farmers to free up more space to conserve natural habitats, where there is likely to be a lot of carbon stored. At the other extreme, farmers can try to use lower yield farming practices to increase the carbon stored on farmland, which will reduce the area of natural habitats available for conservation. And then there are all the in-between strategies that use a mix of high and low yield farmland.

"We found that the first strategy--what we call 'land sparing'--resulted in a greater amount of carbon being stored than any other. So, slightly counter-intuitively, trying to conserve carbon on farmland resulted in less carbon being stored across the landscape as a whole. This was because it resulted in lower yields and so required larger areas to produce the same amount of food, and therefore meant less land could be spared for natural habitats."

To investigate the impacts of different land-use strategies, the researchers needed to have study sites across the whole range of possible land-uses, from zero-yield natural habitats through low-yield farming and then through to high-yield sites. Those sites also needed to be comparable: having the same soils, climate, slope, and more. They also needed reliable ways to measure yields--how much food each site produced per unit area--and the carbon stored on each site.

Williams and co-authors Ben Phalan and Claire Feniuk conducted field surveys of over 11,000 trees. They also conducted in-depth interviews with farmers along with using existing agricultural data to evaluate the potential impacts of different agricultural strategies on above-ground carbon stocks across a diverse range of agricultural and natural systems. To ensure that their findings would be broadly applicable, they included agroforestry and oil palm plantations in the humid tropics of Ghana, cattle ranches in dry tropical forest in Mexico, and arable cropping in temperate wetlands and forests in Poland.

"We were a bit surprised by just how consistent and how strong the result was," Williams says. "The three systems we investigated are very different both in terms of the natural habitats and the farming systems, but in each case it was clear that land sparing--combining high-yield agriculture with preserving or restoring natural habitats--consistently had the potential to store greater amounts of carbon than any other system."

The evidence showed clear potential benefits of land sparing for reducing the loss of carbon stocks overall. That pattern held no matter how much (or how little) food was produced. Of course, he says, those benefits hold only if the land that's "spared" is actually used for natural habitat conservation.

The findings highlight the importance of considering the whole landscape, not just agricultural land.

"When you assess the impacts of different types of agriculture, it is vital to look at the off-farm, as well as the on-farm impacts: lower-yield farmland consistently held more carbon than high-yield farms, so it is tempting to think that it would be better for overall carbon stocks," Williams says. "But, once you account for the greater land use required, you see that the opposite is true. We've got to make sure that we look at all of the impacts of food production, no matter where they are."

Regardless of which land-use strategies are chosen going forward, the researchers say that there are sure to be big losses of carbon into the atmosphere if the amount of food produced increases. That means efforts to reduce food demand, including reducing food waste and meat consumption, will be also essential for conserving carbon stocks across the world.

Williams says they are now working to uncover policy approaches with potential to alleviate threats to biodiversity at the global scale. "Many of these revolve around reducing the area of farmland that we will need to feed the 10 billion people that the world is likely to hold in the next few decades," he says. "So things like increasing agricultural yields, reducing meat consumption, and even leveraging trade to concentrate production in high-yield regions could all be important.
-end-
This research was supported by the Natural Environment Research Council, the Cambridge Philosophical Society, the Cambridge Society for the Application of Research, the Tim Whitmore Fund, the University of Cambridge Fieldwork Fund, the Mary Euphrasia Mosley, Sir Bartle Frere and Worts Fund, the Santander Universities Grants, the T H Middleton Fund, the Robert Gardiner Memorial Trust, St. John's College, the Royal Society for the Protection of Birds, the Isaac Newton Trust, the United Nations Environment Programme-World Conservation Monitoring Centre, a Domestic Research Studentship, the British Ornithologists' Union, the Smuts Memorial Fund, and the Cambridge Philosophical Society, and a Sackler research fellowship at Churchill College.

Current Biology, Williams et al.: "Carbon storage and land-use strategies in agricultural landscapes across three continents" https://www.cell.com/current-biology/fulltext/S0960-9822(18)30755-3

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Greenhouse Gases Articles:

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.
Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.
White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.
Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.
What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.
More Greenhouse Gases News and Greenhouse Gases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...