Nav: Home

To keep more carbon on the ground, halting farmland expansion is key

July 26, 2018

The conversion of forests to farmland is recognized as a major contributor to rising levels of greenhouse gases. And yet it hasn't been clear how to best minimize the loss of sequestered carbon into the atmosphere. Is it better to maximize farm yields so as to use less land area over all? Or should farms be operated so as to retain more carbon on site, even at the expense of crop yields? Researchers reporting in Current Biology on July 26 say that, based on their extensive studies of agricultural operations in the humid tropics of Ghana, the dry tropical forest in Mexico, and temperate wetlands and forests in Poland, the best course in all cases is to limit the conversion of natural habitat to farmland, a strategy known as land sparing. That means maximizing yields on existing agricultural lands.

"At one extreme, farmers can try to produce all their food from as small an area of farmland as possible, by having very high yields," says David Williams from the University of California, Santa Barbara. "This will probably reduce the amount of carbon stored on their farmland, but allows policy makers and farmers to free up more space to conserve natural habitats, where there is likely to be a lot of carbon stored. At the other extreme, farmers can try to use lower yield farming practices to increase the carbon stored on farmland, which will reduce the area of natural habitats available for conservation. And then there are all the in-between strategies that use a mix of high and low yield farmland.

"We found that the first strategy--what we call 'land sparing'--resulted in a greater amount of carbon being stored than any other. So, slightly counter-intuitively, trying to conserve carbon on farmland resulted in less carbon being stored across the landscape as a whole. This was because it resulted in lower yields and so required larger areas to produce the same amount of food, and therefore meant less land could be spared for natural habitats."

To investigate the impacts of different land-use strategies, the researchers needed to have study sites across the whole range of possible land-uses, from zero-yield natural habitats through low-yield farming and then through to high-yield sites. Those sites also needed to be comparable: having the same soils, climate, slope, and more. They also needed reliable ways to measure yields--how much food each site produced per unit area--and the carbon stored on each site.

Williams and co-authors Ben Phalan and Claire Feniuk conducted field surveys of over 11,000 trees. They also conducted in-depth interviews with farmers along with using existing agricultural data to evaluate the potential impacts of different agricultural strategies on above-ground carbon stocks across a diverse range of agricultural and natural systems. To ensure that their findings would be broadly applicable, they included agroforestry and oil palm plantations in the humid tropics of Ghana, cattle ranches in dry tropical forest in Mexico, and arable cropping in temperate wetlands and forests in Poland.

"We were a bit surprised by just how consistent and how strong the result was," Williams says. "The three systems we investigated are very different both in terms of the natural habitats and the farming systems, but in each case it was clear that land sparing--combining high-yield agriculture with preserving or restoring natural habitats--consistently had the potential to store greater amounts of carbon than any other system."

The evidence showed clear potential benefits of land sparing for reducing the loss of carbon stocks overall. That pattern held no matter how much (or how little) food was produced. Of course, he says, those benefits hold only if the land that's "spared" is actually used for natural habitat conservation.

The findings highlight the importance of considering the whole landscape, not just agricultural land.

"When you assess the impacts of different types of agriculture, it is vital to look at the off-farm, as well as the on-farm impacts: lower-yield farmland consistently held more carbon than high-yield farms, so it is tempting to think that it would be better for overall carbon stocks," Williams says. "But, once you account for the greater land use required, you see that the opposite is true. We've got to make sure that we look at all of the impacts of food production, no matter where they are."

Regardless of which land-use strategies are chosen going forward, the researchers say that there are sure to be big losses of carbon into the atmosphere if the amount of food produced increases. That means efforts to reduce food demand, including reducing food waste and meat consumption, will be also essential for conserving carbon stocks across the world.

Williams says they are now working to uncover policy approaches with potential to alleviate threats to biodiversity at the global scale. "Many of these revolve around reducing the area of farmland that we will need to feed the 10 billion people that the world is likely to hold in the next few decades," he says. "So things like increasing agricultural yields, reducing meat consumption, and even leveraging trade to concentrate production in high-yield regions could all be important.
-end-
This research was supported by the Natural Environment Research Council, the Cambridge Philosophical Society, the Cambridge Society for the Application of Research, the Tim Whitmore Fund, the University of Cambridge Fieldwork Fund, the Mary Euphrasia Mosley, Sir Bartle Frere and Worts Fund, the Santander Universities Grants, the T H Middleton Fund, the Robert Gardiner Memorial Trust, St. John's College, the Royal Society for the Protection of Birds, the Isaac Newton Trust, the United Nations Environment Programme-World Conservation Monitoring Centre, a Domestic Research Studentship, the British Ornithologists' Union, the Smuts Memorial Fund, and the Cambridge Philosophical Society, and a Sackler research fellowship at Churchill College.

Current Biology, Williams et al.: "Carbon storage and land-use strategies in agricultural landscapes across three continents" https://www.cell.com/current-biology/fulltext/S0960-9822(18)30755-3

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Greenhouse Gases Articles:

Decomposing leaves are surprising source of greenhouse gases
Scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide.
Decomposing leaves are a surprising source of greenhouse gases
Michigan State University scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide.
NASA to measure greenhouse gases over the mid-Atlantic region in may
In May, a team of Goddard scientists will begin measuring greenhouse gases over the Mid-Atlantic region -- an area chosen in part because it encompasses a range of vegetation, climate and soil types that would influence the exchange of carbon dioxide and methane between Earth and the atmosphere.
Greenhouse gases: First it was cows -- now it's larvae!
Scientists at UNIGE have discovered that Chaoborus spp uses the methane it finds in lakebeds to help it move around.
Energy crop production on conservation lands may not boost greenhouse gases
Growing sustainable energy crops without increasing greenhouse gas emissions, may be possible on seasonally wet, environmentally sensitive landscapes, according to researchers who conducted a study on Conservation Reserve Program (CRP) land.
Short-lived greenhouse gases cause centuries of sea-level rise
Even if there comes a day when the world completely stops emitting greenhouse gases into the atmosphere, coastal regions and island nations will continue to experience rising sea levels for centuries afterward, according to a new study by researchers at MIT and Simon Fraser University.
Reservoirs are a major source of greenhouse gases
The BioScience Talks podcast (http://bioscience.libsyn.com) features discussions of topical issues related to the biological sciences
Reservoirs are a major source of greenhouse gases
Dammed rivers are often considered environmentally friendly, carbon-neutral energy sources, but the reservoirs they create release large amounts of greenhouse gases to the atmosphere.
Controlled Colorado River flooding released stored greenhouse gases
The 2014 experimental controlled pulse of water to the Colorado River Delta has revealed an interesting twist on how large dry watercourses may respond to short-term flooding events: the release of stored greenhouse gases.
OU team investigates microbe-climate interactions in greenhouse gases
A University of Oklahoma research team will analyze microbe-climate interactions in greenhouse gases (CO2, CH4 and N2O) from grasslands and croplands in Oklahoma.

Related Greenhouse Gases Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.