Nav: Home

Fat production and burning are synchronized in livers of mice with obesity

July 26, 2018

PHILADELPHIA - Mice fed a fattening diet develop new liver circadian rhythms that impact the way fat is accumulated and simultaneously burned, according to a new study published in Cell by researchers in the Perelman School of Medicine at the University of Pennsylvania. The team found that as liver fat production increases, surprisingly, so does the body's ability to burn fat. These opposing physiological processes reach their peak activity each day around 5 p.m., illustrating an unexpected connection between overeating, circadian rhythms, and fat accumulation in the liver.

"We know that obesity leads to accumulation of fat in the liver, which can cause inflammation and possibly hepatitis, liver failure, and even liver cancer," said senior author Mitchell Lazar, MD, PhD, director of Penn's Institute for Diabetes, Obesity, and Metabolism, and chief of the division of Endocrinology, Diabetes and Metabolism. "This is rapidly becoming a huge problem, as these conditions can lead to an increased need for liver transplantation, and worse, can be deadly."

While one billion people worldwide are adversely affected by malnutrition, there are another billion who experience excess calorie intake, or "overnutrition," which leads to obesity and other metabolic disorders including type-2 diabetes, cardiovascular disease, fatty liver, hypertension, and cancer. "Studying the harmful effects of overnutrition is a top priority, especially in the United States where metabolic disorders have reached epidemic proportions," Lazar said.

The circadian rhythms that fat creation and burning follow are physiological processes that occur with about every 24 hours. At the molecular level, these cycles involve feedback loops of core clock proteins expressed in virtually every cell of the body. This internal timekeeper functions to integrate environmental stimuli and genetic information to control rhythmic gene expression in a tissue-specific way.

A misalignment of this schedule is increasingly recognized as a risk factor for metabolic disorders. For example, night shift workers and individuals with sleep disorders have an increased risk of metabolic diseases. Understanding the mechanisms that impact the relationship between circadian rhythms and metabolic disorders are necessary for the development of meaningful therapeutic strategies for treating obesity-related diseases.

"We speculate that the diet-induced synchronization of these opposing liver fat metabolic processes is a response to an environment of overnutrition, leading to fat burning outpacing fat accumulation in the liver," said first author Dongyin Guan, PhD, a postdoctoral fellow in Lazar's lab.

The 24-hour clock aspect of this physiology informs the practice of chronotherapy, which involves administering drugs at times when they are most impactful and tolerated in order to enhance effectiveness and reduce toxicity. The team discovered that the rhythm of fat burning is controlled by a protein called PPAR-alpha, which is the target of drugs called fibrates, which are already used to lower lipids in the blood. The amount of PPAR-alpha in the liver also peaked around 5 p.m.

From this coordination, Lazar's team asked whether there would be a benefit to giving short-acting PPAR-alpha drugs at the specific time of day when PPAR-alpha is at its highest level. The researchers observed that a short-acting PPAR-alpha drug reduced liver fat more when it was given in the afternoon than when it was given in the morning.

Similar to how statins (cholesterol-lowering drugs) are prescribed to be taken at bedtime, "our results support that due to the rhythmicity of PPAR-alpha, drugs that lower liver and blood lipid levels could be more effective at specific times of day," Lazar said. "Following this principle more closely to treat liver metabolic disease may indeed benefit patients, as recent studies have shown that PPAR-alpha expression oscillates in the human liver."
-end-
The study was supported by the National Institutes of Health (R01-DK045586, R01-HL54926, R01-DK098542, F32DK116519), the JPB Foundation and an American Diabetes Association Training Grant (1-17-PDF-076, 1-18-PDF-132).

Penn co-authors are Ying Xiong, Patricia C. Borck, Romeo Papazyan, Bin Fang, Chunjie Jiang, Yuxiang Zhang, Erika R. Briggs, Wenxiang Hu and David Stege, as well as Joshua D. Rabinowitz and Cholsoon Jang from Princeton University, and Harry Ischiropoulos and Paschalis-Thomas Doulias from the Children's Hospital of Philadelphia Research Institute.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital - the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

University of Pennsylvania School of Medicine

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".