Nav: Home

Black holes really just ever-growing balls of string, researchers say

July 26, 2018

COLUMBUS, Ohio - Black holes aren't surrounded by a burning ring of fire after all, suggests new research.

Some physicists have believed in a "firewall" around the perimeter of a black hole that would incinerate anything sucked into its powerful gravitational pull.

But a team from The Ohio State University has calculated an explanation of what would happen if an electron fell into a typical black hole, with a mass as big as the sun.

"The probability of the electron hitting a photon from the radiation and burning up is negligible, dropping even further if one considers larger black holes known to exist in space," said Samir Mathur, a professor of physics at Ohio State. The study appears in the Journal of High Energy Physics.

The new study builds on previous work from 2004 led by Mathur that theorized that black holes are basically like giant, messy balls of yarn - "fuzzballs" that gather more and more heft as new objects are sucked in. That theory, Mathur said, resolved the famous black hole "information paradox" outlined by Steven Hawking in 1975. Hawking's research had concluded that particles entering a black hole can never leave. But that ran counter to the laws of quantum mechanics, creating the paradox.

The firewall argument emerged in 2012, when four physicists from the University of California, Santa Barbara argued that any object like a fuzzball would have to be surrounded by a ring of fire that will burn any object before it could reach the fuzzball's surface.

"What we've shown in this new study is a flaw in the firewall argument," Mathur said.

Black holes are places in space with such immense gravitational pull that not even light can escape once it's captured. Their powerful pull condenses any matter black holes draw in. They are invisible, but scientists have established that black holes can range from tiny to huge, estimations that are based on the behavior of stars and gas surrounding the black hole.

After months of mathematical machinations, Mathur and his team arrived at their by-the-numbers explanation to support their theory discounting the firewall. It's built on string theory, the scientific notion that the universe is composed of subatomic string-like tubes of energy. The belief is rooted in the marriage of quantum mechanics (which concerns itself with the mathematics of subatomic particles) and Albert Einstein's theory of relativity.

Mathur has always counted himself among those scientists who are firewall skeptics.

"The question is 'Where does the black hole grab you?' We think that as a person approaches the horizon, the fuzzball surface grows to meet it before it has a chance to reach the hottest part of the radiation, and this is a crucial finding in this new physics paper that invalidates the firewall argument," he said.

"Once a person falling into the black hole is tangled up in strings, there's no easy way to decide what he will feel.

"The firewall argument had seemed like a quick way to prove that something falling through the horizon burns up. But we now see that there cannot be any such quick argument; what happens can only be decided by detailed calculations in string theory," Mathur said.
-end-
Ohio State graduate students Bin Guo and Shaun Hampton also worked on the study.

#

EDITOR'S NOTE: For more details on the new study, visit http://www.physics.ohio-state.edu/~mathur/firewallstory2.pdf

CONTACT: Samir Mathur, 614-688-0382; Mathur.16@osu.edu

Ohio State University

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".