Nav: Home

Software recreates complex movements for medical, rehabilitation, and basic research

July 26, 2018

An open-source movement simulator that has already helped solve problems in medicine, paleontology, and animal locomotion has been expanded and improved, according to a new publication in the open-access journal PLOS Computational Biology. The software, called OpenSim, has been developed by a team at Stanford University, led by first authors Ajay Seth, Jennifer Hicks, and Thomas Uchida, with contributions from users around the world. The new paper reviews the software's wide range of applications and describes the improvements that can increase its utility even further.

The major challenges in creating movements "in silico" include formulating the underlying mathematical equations and ensuring the solution is accurate when calculating variables that are difficult to measure experimentally, such as the metabolic consumption of individual muscles and the stretch and recoil of tendons during movement. Physics-based models enable prediction of novel movements, both adaptive and maladaptive, such as excess hip rotation in response to leg muscle weakness. OpenSim combines methods from biology, neuroscience, mechanics, and robotics to address these challenges and create fast and accurate simulations of movement.

OpenSim has already been put to use determining whether Australopithecus afarensis had sufficient grip strength to make certain tools, based on fossilized bone discoveries; developing strategies to prevent ankle injuries during athletic performance; and optimizing a wearable robotic device for long jumps. Additional applications include predicting the locomotion patterns of extinct species and planning tendon-lengthening surgery for children with cerebral palsy.

Recent improvements include addition of more accurate models of muscle dynamics, joint kinematics, and assistive devices, which will aid in rehabilitation studies; the ability to create custom studies by combining existing tools in new ways; tools for importing motion-capture data in order to test simulations against experiments; and modern visualization tools for creating insightful animations of movement.

"The software is like a Swiss Army knife for the movement scientist," said the lead authors. "It allows researchers with no special expertise in biomechanics to perform powerful and accurate simulations to test hypotheses, visualize solutions to problems, and communicate ideas. Because it incorporates decades of research about how humans and other animals move, and is constantly being augmented and enhanced by the community of users from so many different fields, OpenSim can accelerate discoveries in any field in which biological movement plays a role."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006223

Citation: Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, et al. (2018) OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol 14(7): e1006223. https://doi.org/10.1371/journal.pcbi.1006223

Funding: This work was supported by a) the National Institutes of Health through grants U54 GM072970, R24 HD065690, P2C HD065690, U54 EB020405, R01 HD033929, R01 NS055380, R01 HD046814, and R01 HD046774; b) Defense Advanced Research Projects Agency (DARPA) contracts, including W911QX-12-C-0018 and HR0011-12-C-0111, via subcontract 12-006 from Open Source Robotics Foundation, and c) European Commission grant FP7-ICT-248189. JLH and CLD received support from the National Science Foundation Graduate Fellowship Program; JLH, CLD, CFO, EMA, and JRY received support from the Stanford (University) Bio-X Graduate Fellowship; and CFO received support from the Siebel Scholars Program . The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Biology Articles:

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
More Biology News and Biology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.