Nav: Home

Software recreates complex movements for medical, rehabilitation, and basic research

July 26, 2018

An open-source movement simulator that has already helped solve problems in medicine, paleontology, and animal locomotion has been expanded and improved, according to a new publication in the open-access journal PLOS Computational Biology. The software, called OpenSim, has been developed by a team at Stanford University, led by first authors Ajay Seth, Jennifer Hicks, and Thomas Uchida, with contributions from users around the world. The new paper reviews the software's wide range of applications and describes the improvements that can increase its utility even further.

The major challenges in creating movements "in silico" include formulating the underlying mathematical equations and ensuring the solution is accurate when calculating variables that are difficult to measure experimentally, such as the metabolic consumption of individual muscles and the stretch and recoil of tendons during movement. Physics-based models enable prediction of novel movements, both adaptive and maladaptive, such as excess hip rotation in response to leg muscle weakness. OpenSim combines methods from biology, neuroscience, mechanics, and robotics to address these challenges and create fast and accurate simulations of movement.

OpenSim has already been put to use determining whether Australopithecus afarensis had sufficient grip strength to make certain tools, based on fossilized bone discoveries; developing strategies to prevent ankle injuries during athletic performance; and optimizing a wearable robotic device for long jumps. Additional applications include predicting the locomotion patterns of extinct species and planning tendon-lengthening surgery for children with cerebral palsy.

Recent improvements include addition of more accurate models of muscle dynamics, joint kinematics, and assistive devices, which will aid in rehabilitation studies; the ability to create custom studies by combining existing tools in new ways; tools for importing motion-capture data in order to test simulations against experiments; and modern visualization tools for creating insightful animations of movement.

"The software is like a Swiss Army knife for the movement scientist," said the lead authors. "It allows researchers with no special expertise in biomechanics to perform powerful and accurate simulations to test hypotheses, visualize solutions to problems, and communicate ideas. Because it incorporates decades of research about how humans and other animals move, and is constantly being augmented and enhanced by the community of users from so many different fields, OpenSim can accelerate discoveries in any field in which biological movement plays a role."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006223

Citation: Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, et al. (2018) OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol 14(7): e1006223. https://doi.org/10.1371/journal.pcbi.1006223

Funding: This work was supported by a) the National Institutes of Health through grants U54 GM072970, R24 HD065690, P2C HD065690, U54 EB020405, R01 HD033929, R01 NS055380, R01 HD046814, and R01 HD046774; b) Defense Advanced Research Projects Agency (DARPA) contracts, including W911QX-12-C-0018 and HR0011-12-C-0111, via subcontract 12-006 from Open Source Robotics Foundation, and c) European Commission grant FP7-ICT-248189. JLH and CLD received support from the National Science Foundation Graduate Fellowship Program; JLH, CLD, CFO, EMA, and JRY received support from the Stanford (University) Bio-X Graduate Fellowship; and CFO received support from the Siebel Scholars Program . The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Biology Articles:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.
Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.
Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.
A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.
Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
More Biology News and Biology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.