New screening approach reveals importance of microRNAs in papillomavirus life cycle

July 26, 2018

The discovery of microRNAs encoded by papillomaviruses supports the important role of these small molecules in persistent infection, according to a study published July 26 in the open-access journal PLOS Pathogens. Study author Rachel Chirayil of the University of Texas at Austin and colleagues made this discovery using a new approach that enables microRNA identification for the enormous range of pathogens that have genomic data but cannot be cultured in a laboratory setting.

Papillomaviruses can cause several types of cancer in humans, but it remains unclear why only some infections lead to the development of malignant tumors. To answer this question, it's necessary to better characterize papillomavirus gene products and their role in the life cycle of these pathogens. MicroRNAs are small RNAs that regulate diverse biological processes, including host-pathogen interactions. Consequently, microRNAs are commonly encoded by viruses that undergo long-term persistent infection. But until now, no widely accepted papillomavirus-encoded microRNAs had been discovered due in part to the lack of suitable laboratory models.

To overcome this hurdle, the researchers developed a new wet bench technology called microRNA Discovery by forced Genome Expression (miDGE). This broadly applicable methodology can screen numerous pathogen genomes in parallel, identifying microRNAs from organisms lacking a laboratory culture system. Using miDGE, they screened more than 73 different papillomavirus genomes for the ability to encode microRNAs.

Most papillomaviruses do not appear to code for microRNAs, but the researchers uncovered five new highly probable papillomavirus-encoded microRNAs. Although the papillomavirus microRNAs are not expressed in cancers associated with high-risk infection, some of them control viral gene expression. According to the authors, the findings suggest that microRNAs are important regulators of the papillomavirus life cycle.

"The most important aspect of this work is that this new technology opens up parallel study of numerous pathogens in a single experiment," researcher Christopher Sullivan adds, "allowing for deep evolutionary cross comparisons. Here, insight from a bird virus helped us to understand why some human papilloma viruses do, and just as importantly, why most don't, encode their own microRNAs."
-end-


PLOS

Related Pathogens Articles from Brightsurf:

Pathogens in the mouth induce oral cancer
Pathogens found in tissues that surround the teeth contribute to a highly aggressive type of oral cancer, according to a study published 1st October in the open-access journal PLOS Pathogens by Yvonne Kapila of the University of California, San Francisco, and colleagues.

A titanate nanowire mask that can eliminate pathogens
Researchers in Lásló Forró's lab at EPFL, Switzerland, are working on a membrane made of titanium oxide nanowires, similar in appearance to filter paper but with antibacterial and antiviral properties.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

The Parkinson's disease gut has an overabundance of opportunistic pathogens
In 2003, Heiko Braak proposed that Parkinson's disease is caused by a pathogen in the gut that could pass through the intestinal mucosal barrier and spread to the brain through the nervous system.

Crop pathogens 'remarkably adaptable'
Pathogens that attack agricultural crops show remarkable adaptability to new climates and new plant hosts, new research shows.

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.

Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.

Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.

Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.

Read More: Pathogens News and Pathogens Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.