Nav: Home

Bile acids from the gut could help to treat cocaine abuse

July 26, 2018

Bile acids that aid fat digestion are also found to reduce the rewarding properties of cocaine use, according to a study publishing on July 26 in the open-access journal PLOS Biology by India Reddy, Nicholas Smith, and Robb Flynn of Vanderbilt University, Aurelio Galli of the University of Alabama at Birmingham, and colleagues. The results point to potential new strategies for treatment of cocaine abuse.

The study builds on evidence that bile acids influence the brain's reward system. Bile acids are normally released from the gall bladder into the upper part of the small intestine, where they emulsify fats for absorption, before being recycled further down the small intestine. In bile diversion surgery, an experimental treatment for weight loss, bile is released at the end of the small intestine, increasing the amount of bile acids that enter the general circulation. Mice treated with this surgery have less appetite for high-fat foods, which suggests that bile acids affect brain reward pathways.

To test this hypothesis, the authors first showed that surgery produced an elevation of bile acids in the brain, resulting in a reduction in dopamine release in response to cocaine. Mice receiving the surgery also showed less preference for the cocaine-associated chamber, indicating that cocaine was probably less rewarding.

The authors next administered a drug, called OCA, that mimics the effect of bile at its receptor in the brain, called TGR5. They found that OCA mimicked the cocaine-related results of surgery in untreated mice, strengthening the case that the effects of surgery were due to elevated levels of bile acids. Knocking out TGR5 from the brain's nucleus accumbens, a central reward region, prevented bile acids from reducing cocaine's effects, confirming that signaling through this receptor was responsible for the cocaine-related results of bile acid elevation.

"These findings redefine the physiological significance of bile acid signaling and highlight the importance of determining whether bile acid analogues represent a viable pharmacological treatment for cocaine abuse," Galli said. OCA, the compound that activated the bile acid receptor in this study, is approved for the treatment of primary biliary cirrhosis (Intercept Pharmaceuticals) offering fast translational opportunities for pharmacotherapies. This study also contributes to a greater understanding of how gut-based signaling influences higher order central functions such as reward.

The gut-to-brain axis regulates diverse behavioral phenotypes. The authors reveal that a new gut-based bariatric surgical approach chronically elevates systemic bile acids and reduces cocaine reward. These findings redefine the physiological significance of bile acid signaling and highlight the importance of determining whether bile acid analogues represent a viable pharmacological treatment for cocaine abuse.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006682

Citation: Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, et al. (2018) Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol 16(7): e2006682. https://doi.org/10.1371/journal.pbio.2006682

Image Caption: Researchers reveal that bile acids from the gut reduce cocaine's effects in the brain, which may offer drug addiction treatment.

Image Credit: Sammisreachers on Pixabay

Funding: NIH http://www.nih.gov (grant number 007347). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH (grant number 038058). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH http://www.nih.gov (grant number 036940). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH http://www.nih.gov (grant number 015388). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH http://www.nig.gov (grant number 105847). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH http://www.nih.gov (grant number 035263). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Cocaine Articles:

Cocaine addiction leads to build-up of iron in brain
Cocaine addiction may affect how the body processes iron, leading to a build-up of the mineral in the brain, according to new research from the University of Cambridge.
Potential new treatment for cocaine addiction
A team of researchers led by Cardiff University has discovered a promising new drug treatment for cocaine addiction.
Study using animal model provides clues to why cocaine is so addictive
Scientists at Wake Forest Baptist Medical Center are one step closer to understanding what causes cocaine to be so addictive.
Magnetic stimulation of the brain may help patients with cocaine addiction
Baltimore, MD Targeted magnetic pulses to the brain were shown to reduce craving and substance use in cocaine-addicted patients.
New insights on how cocaine changes the brain
The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published Nov.
UK awarded $6 million to further develop treatment for cocaine abuse
University of Kentucky College of Pharmacy Professor Chang-Guo Zhan, along with fellow UK Professors Fang Zheng and Sharon Walsh, and Professor Mei-Chuan Ko from Wake Forest University, recently received $6 million in funding over five years to further develop a potential treatment for cocaine abuse.
Cocaine addiction, craving and relapse
One of the major challenges of cocaine addiction is the high rate of relapse after periods of withdrawal and abstinence.
Which is most valuable: Gold, cocaine or rhino horn?
Elephants, rhinoceroses, hippopotamuses, gorillas and the majority of other very large animal species are threatened with extinction, an international team of scientists reported this month in the open-access online journal Science Advances.
Cocaine changes the brain and makes relapse more common in addicts
Cocaine use causes 'profound changes' in the brain that lead to an increased risk of relapse due to stress -- according to new research from the University of East Anglia.
WSU researchers see way cocaine hijacks memory
Washington State University researchers have found a mechanism in the brain that facilitates the pathologically powerful role of memory in drug addiction.

Related Cocaine Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".