Nav: Home

Researchers discover chemical reaction that uses a surprising molecule

July 26, 2018

For more than a decade in the middle of the 20th century, chemists debated exactly what "carbocations" -- molecules with a positively charged carbon atom -- looked like. What is known as the "classical view," which was taught at the beginning of that century, stated that the carbon in these molecules held the charge; the "non-classical view" held that the charge could also be shared by other nearby atoms. Both theory and experiment eventually proved that non-classical carbocations existed, and the debate faded away. Even if these structures exist, most chemists believed, they had no practical relevance.

Now, UCLA researchers have discovered a chemical reaction -- that might someday be used to process petroleum into useful compounds -- in which non-classical carbocations play key roles. The results, published July 27 in the journal Science, underscore the importance of non-classical cations -- ions with fewer electrons than protons, and thus a positive charge. The findings also offer a new reaction to process alkanes, chemicals found in methane and propane gases that are notoriously hard to convert to other products.

"There's both this reaction with a lot of practical potential, and this surprising chemistry behind the reaction," said Hosea Nelson, a UCLA assistant professor of chemistry and biochemistry and senior author of the study.

"Now we have shown the importance of these species in explaining reactivity and selectivity," said Kendall Houk, UCLA's Saul Winstein Professor in Organic Chemistry, a co-author of the new research. Winstein was a UCLA professor and a champion of the non-classical ion concept. Through his work, UCLA became known as a premier university for the study of carbocations, said Miguel García-Garibay, dean of the UCLA Division of Physical Sciences and professor of chemistry and biochemistry.

Nelson's laboratory focuses on developing new chemical reactions that have practical uses in creating drugs and processing unwanted waste products.

"Our goal is to take smokestack garbage from a refinery and turn it into pharmaceuticals," Nelson said. Alkanes from this type of waste have posed a particular problem because they're very chemically stable, he said. That means it's difficult to break apart the bonds that hold these molecules together.

Last year, however, Nelson and his colleagues discovered a chemical reaction that seemed to effectively alter alkanes into a byproduct that's more chemically useful. There was just one problem, Nelson said. "Here was this very powerful reaction, but we couldn't explain how or why it worked," he said. He teamed up with Houk to get at an explanation.

When the researchers further analyzed the reaction with modern computational methods, they found that the reaction involves formation of a non-classical carbocation.

"This was a surprising fundamental finding," Nelson said. "It introduces a lot of other questions, and we think that the non-classicality of these reactions will allow us to break a lot of the rules of chemical synthesis to develop new types of reactions."

Since the charge is shared among multiple atoms -- the non-classical model -- the molecule has more flexibility to undergo a diverse array of reactions, including those needed to break apart the strong bonds of alkanes. Only by looking at the reactions with molecular dynamics, following the motions of atoms as reactions occur, could the reactions be understood.

"We have developed a whole new way to think about reactions through our molecular dynamics simulations," Houk said.

For now, the alkanes aren't converted directly into drugs, but rather into other chemicals that might be useful in processing drug molecules. Nelson suspects the reaction also has utility in breaking apart the long alkane molecules found in some non-biodegradable plastics. His group is pursuing both applications in more detail.
-end-
The study's other authors are UCLA chemistry graduate students Stasik Popov, Brian Shao, Alex Bagdasarian and Tyler Benton; visiting professor Luyi Zou; and former graduate student Zhongyue Yang.

Funding for the study was provided by the Packard Foundation, the Alfred P. Sloan Foundation, the National Science Foundation and a Christopher S. Foote Fellowship.

University of California - Los Angeles

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.