Nav: Home

New ceria nanoparticles attack Parkinson's disease from three fronts

July 26, 2018

Researchers at the Center for Nanoparticle Research, within the Institute for Basic Science (IBS, South Korea), have developed a set of nanoparticles for Parkinson's disease treatment. Tested in mice and published in Angewandte Chemie as a "hot paper", this study represents the first biomedical application of nanoparticles in the clearance of reactive oxygen by-products in Parkinson's, and gives new hints of therapeutic targets. In the future, the system is expected to be used in the identification and treatment of other pathologies caused by reactive oxygen species, including: cancers, cardiovascular diseases, neurodegenerative diseases, and sepsis.

Parkinson's disease is characterized by the sudden degeneration and death of neurons that secrete dopamine in the brain. Accumulation of reactive oxygen species damages the neurons, by contributing to the onset of mitochondrial dysfunction, neuroinflammation, and neuronal death.

The brain's low antioxidant levels and abundance of lipids, make it more vulnerable to the side effects of reactive oxygen species, including free radicals. The oxidative stress caused by these molecules inside mitochondria, together with neuroinflammation due to intracellular and extracellular oxidative stress are considered important causes of Parkinson's disease.

Until now, there has been no technique to selectively clear reactive oxygen species, nor to distinguish their effect according to their cellular localization. To solve these problems, IBS nanoparticle researchers have devised three types of ceria nanoparticles with different sizes and surface properties, capable of selectively removing reactive oxygen species from mitochondria, intracellular, and extracellular spaces.

Ceria nanoparticles aimed at the intracellular spaces have a size of 11 nm, which is small enough to enter the cell, and a negative surface charge (ζ-potential: -23 mV) which prevents them from entering the mitochondria membrane. The ceria nanoparticle targeting oxygen free radicals in mitochondria are decorated with triphenylphosphonium (TPP), which confers them a positive surface charge of +45 mV. Finally, nanoparticle clusters of hundreds of thousands of 3 nm ceria nanoparticles with a size of 400 nm and a negative surface charge, are capable of removing reactive oxygen species while remaining outside the cell.

The nanoparticles delivered to a part of the brain, called corpus striatum, in mouse models improved the typical signs of Parkinson's disease: neuro-inflammation, oxidative stress, and diminishing level of the enzyme tyrosine hydroxylase - a hallmark of Parkinson's disease - which produces a dopamine precursor and affects mobility.

Attacking oxidative stress and neuroinflammation from three different fronts allowed IBS scientists to pinpoint the most critical therapeutic targets. In particular, removing reactive oxygen species in extracellular spaces with cluster-ceria nanoparticles diminished neuro-inflammation, but did not show any effect in reducing oxidative stress and maintaining normal levels of tyrosine hydroxylase. Instead, mice treated with ceria nanoparticles and the TPP-ceria nanoparticles had significantly higher tyrosine hydroxylase levels than the controls. The results suggest that lowering oxidative stress in intracellular and/or mitochondrial compartments is important to treat Parkinson's disease.

"These experiments have identified the essential role of intracellular and mitochondrial reactive oxygen species in the progression and treatment of Parkinson's disease. We hope that the ceria nanoparticle system will be useful tools for developing therapeutic agents in diseases that involve oxidative stress, as well as other degenerative diseases," explains KWON Hyek Jin, first author of the study.

"This result is not only the first to develop a technique to selectively remove reactive oxygen species from intracellular, extracellular, and mitochondrial spaces, but also to investigate the effects of Parkinson's disease, the cause of the disease, and a new medical application of nanoparticles," explains HYEON Taeghwan, the corresponding author of the study.

Ceria nanoparticles work like artificial antioxidants by mimicking the activity of natural antioxidants, like catalase- and superoxide dismutase (SOD). Cerium ions on the surface switch between Ce3+ and Ce4+ in the presence of reactive oxygen species. In the past, the recyclable function of the ceria nanoparticles has been exploited by the same research group in animal models of ischemic stroke, and Alzheimer's disease.
-end-


Institute for Basic Science

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"