Like film editors and archaeologists, biochemists piece together genome history

July 26, 2019

Old-school Hollywood editors cut unwanted frames of film and patched in desired frames to make a movie. The human body does something similar--trillions of times per second--through a biochemical editing process called RNA splicing. Rather than cutting film, it edits the messenger RNA that is the blueprint for producing the many proteins found in cells.

In their exploration of the evolutionary origins and history of RNA splicing and the human genome, UC San Diego biochemists Navtej Toor and Daniel Haack combined two-dimensional (2D) images of individual molecules to reconstruct a three-dimensional (3D) picture of a portion of RNA--what the scientists call group II introns. In so doing, they discovered a large-scale molecular movement associated with RNA catalysis that provides evidence for the origin of RNA splicing and its role in the diversity of life on Earth. Their breakthrough research is outlined in the current edition of Cell.

"We are trying to understand how the human genome has evolved starting from primitive ancestors. Every human gene has unwanted frames that are non-coding and must be removed before gene expression. This is the process of RNA splicing," stated Toor, an associate professor in the Department of Chemistry and Biochemistry, adding that 15 percent of human diseases are the result of defects in this process.

Toor explained that his team works to understand the evolutionary origins of 70 percent of human DNA--a portion made up of two types of genetic elements, which are both thought to have evolved from group II introns. Specifically, spliceosomal introns, which make up about 25 percent of the human genome, are non-coding sequences that must be removed before gene expression. The other 45 percent is comprised of sequences derived from what are called retroelements. These are genetic elements that insert themselves into DNA and hop around the genome to replicate themselves via an RNA intermediate.

"Studying group II introns gives us insight into the evolution of a large portion of the human genome," noted Toor.

Working with the group II intron RNA nanomachine, Toor and Haack, a postdoctoral scholar at UC San Diego and first author of the paper, were able to isolate the group II intron complexes from a species of blue-green algae that lives at high temperature.

"Using a group II intron from a high-temperature organism facilitated structure determination due to the innate stability of the complex from this species," said Haack. "The evolution of this type of RNA splicing likely led to the diversification of life on Earth."

Haack further explained that he and Toor discovered that the group II intron and the spliceosome share a common dynamic mechanism of moving their catalytic components during RNA splicing.

"This is the strongest evidence to date that the spliceosome evolved from a bacterial group II intron," he said.

Additionally, the findings reveal how group II introns are able to insert themselves into DNA through a process called retrotransposition. This copy-and-paste process has resulted in selfish retroelements proliferating in human DNA to comprise a large portion of the genome.

"Replication of these retroelements has played a large role in shaping the architecture of the modern human genome and has even been implicated in the speciation of primates," noted Toor.

The researchers used cryo-electron microscopy (cryo-EM) to extract a molecular structure of the group II intron. They froze the RNA in a layer of thin ice and then shot electrons through this sample. According to the scientists, the electron microscope can magnify the image 39,000 times. The resulting 2D images of individual molecules were then put together to come up with a 3D view of the group II intron.

"This is like molecular archaeology," described Haack. "Group II introns are living fossils that give us a glimpse into how complex life first evolved on Earth."
This research was supported by the National Institutes of Health (grants 1R01GM123275, 1R01GM033050, NIH DP5 OD021396 and U54GM103368).

University of California - San Diego

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to