Trapping tiny particles: A versatile tool for nanomanipulation

July 26, 2020

Nanoparticles are tiny. At just 1/1000th of a millimeter, they're impossible to see with the naked eye. But, despite being small, they're extremely important in many ways. If scientists want to take a close look at DNA, proteins, or viruses, then being able to isolate and monitor nanoparticles is essential.

Trapping these particles involves tightly focusing a laser beam to a point that produces a strong electromagnetic field. This beam can hold particles just like a pair of tweezers but, unfortunately, there are natural restrictions to this technique. Most notable are the size restrictions - if the particle is too small, the technique won't work. To date, optical tweezers have been unable to hold particles like individual proteins, which are only a few nanometers in diameter.

Now, due to recent advances in nanotechnology, researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a technique for precise nanoparticle trapping. In this study, they overcame the natural restrictions by developing optical tweezers based on metamaterials - a synthetic material with specific properties that do not occur naturally. This was the first time that this kind of metamaterial had been used for single nanoparticle trapping.

"Being able to manipulate or control these small particles is crucial for advances in biomedical science," explained Dr. Domna Kotsifaki, staff scientist in the OIST Unit and first author of the research paper published in Nano Letters. Dr. Kotsifaki went on to explain that trapping these nanoparticles could enable researchers to see the progression of cancer, to develop effective drugs, and to advance biomedical imaging. "The potential applications for society are far-reaching."

This novel technique has two sought after abilities - it can stably trap the nanoparticles using low intensity laser power and it can be used for a long period whilst avoiding light damage to the sample. The reason for this was the metamaterial that the researchers chose to use. This metamaterial is highly sensitive to changes in the surrounding environment and, therefore, allows for the use of low intensity laser power.

"Metamaterials have unusual properties due to their unique design and structure. But this makes them very useful. Over the last few years, a whole new era of devices with novel concepts and potential applications has been created from them," explained Dr. Kotsifaki. "From the metamaterial, we fabricated an array of asymmetric split rings using a beam of ions - tiny, charged particles - on a 50 nm gold film."

To test whether the technique worked, the research group illuminated the device with near infrared light and trapped 20 nm polystyrene particles at certain regions on it.

Dr. Kotsifaki and colleagues were looking for the trap stiffness, which is a measurement of trapping performance. "The achieved trapping performance was several times better than that of conventional optical tweezers and the highest reported to date as far as we know," she explained. "As the first group to use this device for precision nanoparticle trapping, it has been rewarding to contribute to such progress in this research area."

The research team now plans to tweak their device to see if these tweezers can be used in real-world applications. Specifically, in the future, this device could be utilized to create lab-on-chip technologies, which are hand-held, diagnostic tools that can provide results efficiently and economically. Alongside its applications in biomedical science, this research has provided new and fundamental insights into nanotechnology and light behavior at the nanoscale.

As well as Dr. Domna Kotsifaki, the research group consisted of Professor Síle Nic Chormaic, who leads the OIST Unit, and staff scientist, Dr. Viet Giang Truong.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.